МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ имени И.Т. ТРУБИЛИНА»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

для поступающих на обучение по программам магистратуры по направлению

09.04.02 Информационные системы и технологии

1. Введение

Настоящая программа предназначена для поступающих на обучение по программам магистратуры по направлению 09.04.02 Информационные системы и технологии.

2. Шкала оценивания и минимальное количество баллов

При приеме на обучение по программам магистратуры результаты вступительного испытания, проводимого университетом самостоятельно, оцениваются по 100-балльной шкале.

Вступительное испытание проводится в устной форме в виде индивидуального собеседования.

Минимальное количество баллов, подтверждающее успешное прохождение вступительного испытания, – 51.

В ходе собеседования поступающий отвечает на 4 вопроса. Результат ответа на каждый вопрос оценивается от 0 до 25 баллов по критериям, представленным в таблице ниже. Общая сумма баллов по итогам вступительного испытания складывается из баллов, полученных за ответ на каждый из 4 вопросов.

Количество	
баллов за ответ	Критерии оценивания
на один вопрос	
25	Дан полный ответ на вопрос.
20-24	Допущена одна ошибка.
	Ошибки отсутствуют, допущены не более двух недочетов.
13-19	Допущена одна грубая ошибка.
	Допущена одна ошибка и от одного до двух недочётов.
	Ошибки отсутствуют, имеется от трех до пяти недочетов.
7-12	Допущена одна грубая ошибка и от двух до четырех недочетов.
	Допущена одна ошибка и от трех до пяти недочётов.
	Допущены одна грубая и одна негрубая ошибка и не более одного недочета.
	Ошибки отсутствуют, имеется от шести до семи недочетов.
1-6	Допущена одна грубая ошибка и от пяти до шести недочетов.
	Допущена одна ошибка и от шести до семи недочётов.
	Допущены две грубые ошибки и от одного до двух недочетов.
	Допущены две ошибки и от трех до четырех недочетов.
	Допущены одна грубая и одна негрубая ошибка и двух до трех недочетов.
	Допущено более двух грубых или более двух негрубых ошибок.
	Ошибки отсутствуют, имеется восемь и более недочетов.
0	Ответа нет.
	Дан неверный ответ.
	Ответ не соответствует нормам, изложенным в пунктах 1, 2, 3, 4, 5.

Ответ на вопрос считается полным, если его содержание полностью соответствует программе, содержит все необходимые теоретические факты и обоснованные выводы, сопровождается поясняющими примерами. В ответе показано понимание основных положений, составляющих основу по теме вопроса, изложение построено логически правильно, стилистически грамотно, с точным использованием терминологии предметной области. Поступающий демонстрирует свободное оперирование учебным материалом различной степени сложности с использованием сведений из других областей. В ответе отражено умение применять теоретические положения при выполнении практических задач.

При оценке знаний, поступающих учитываются грубые ошибки, ошибки и недочеты.

Грубыми ошибками являются:

- незнание определений и сущности основных понятий предметной области, формулировок утверждений, схем и формул, предусмотренных программой вступительного испытания;
 - не владение умениями и навыками, предусмотренными программой;
- неумение формализовать постановку задачи, выбрать правильный метод и алгоритм ее решения;
 - неумение применять типовые методы в простейших прикладных ситуациях. **Ошибками** следует считать:
- неточности определений понятий предметной области, формулировок утверждений, формул;
- недостаточная обоснованность при доказательстве фундаментальных понятий;
- не владение одним из умений и навыков, предусмотренных программой, но не относящихся к грубым ошибкам.

Недочетами являются:

- нелогичное и непоследовательное изложение материала;
- неточности в использовании терминологии предметной области;
- отсутствие обоснований при применении теоретических положений для выполнения практических задач.

3. Содержание программы вступительного испытания

Тема 1 – «Компьютерные системы»

- 1. Классификация компьютеров по областям применения. Общие требования, предъявляемые к современным компьютерам.
- 2. Оценка производительности вычислительных систем. Закон Амдала и его следствия.
- 3. Ограничения фон-неймановской архитектуры. Концепция параллельной обработки данных.
- 4. Классификация архитектур вычислительных систем. Концепция конвейерной обработки данных.
 - 5. Мультипроцессорные системы. Матричные процессоры.
- 6. Понятие о Марковском случайном процессе, потоки событий, классификация СМО.

- 7. Уравнения Колмогорова. Формула Литтла.
- 8. Одноканальная СМО с неограниченной очередью.
- 9. Многоканальная СМО с неограниченной очередью. Задача Эрланга.
- 10. Управление ресурсами однопроцессорных систем оперативной обработки данных (алгоритмы SPT и RR).
 - 11. Планирование вычислительного процесса (алгоритмы LPT и Макнотона).
 - 12. Производительность МПС с общей и индивидуальной памятью.
 - 13. Компьютерные сети и базовые топологии ЛВС.
 - 14. Методы доступа к общей шине в ЛВС.
 - 15. Сетевые протоколы и уровни. Модуляция и демодуляция в сетях.
 - 16. Емкость канала связи. Уплотнение информационных потоков.
- 17. Виды протоколов канального уровня. Анализ производительности протоколов канального уровня.
 - 18. Скорость передачи полезной информации и оптимальная длина кадра.
- 19. Методы коммутации в сетях. Выбор кратчайших путей (маршрутизация) в сетях.
 - 20. Топология, адреса, протоколы и технологии Internet.

Тема 2 – «Операционные системы»

- 1. Определение операционной системы. Основные функции и характеристики операционной системы.
 - 2. Состав операционной системы. Эволюция ОС и основные идеи.
- 3. Ресурс. Классификация ресурсов. Операционная среда. Понятие процесса.
- 4. Прерывания. Типы и приоритеты прерываний. Алгоритм выполнения прерываний. Главные функции механизма прерываний.
- 5. Классификация прерываний. Распределение прерываний по уровням приоритета.
- 6. Планирование заданий процессов и потоков. Виды планирования, используемые в современных ОС.
- 7. Алгоритмы планирования процессов и потоков. Достоинства и недостатки различных алгоритмов планирования.
- 8. Разделение времени при работе с процессами и потоками. Понятие кванта времени. Алгоритмы, основанные на квантовании.
- 9. Понятие приоритетного обслуживания. Разновидности приоритетного планирования. Система приоритетного обслуживания Windows.
- 10. Физическая организация памяти. Виртуальная память. Иерархия памяти.
 - 11. Сегментное распределение памяти.
 - 12. Страничное распределение памяти.
 - 13. Сегментно-страничное распределение памяти.
 - 14. Плоская модель памяти. Основные задачи управления процессами.

- 15. Управление процессами и потоками. Среда выполнения процесса. Операционная среда.
- 16. Создание процесса. Диаграмма состояний однопотокового процесса. Завершение процесса. Группирование процессов.
- 17. Планирование потока. Алгоритмы планирования процессов и потоков. Создание потока. Управление потоками на уровне пользователя.
- 18. Управление потоками на уровне ядра. Взаимодействие и синхронизация процессов и потоков. Взаимодействие процесса с ОС.
- 19. Использование блокировки памяти. Алгоритм Деккера. Семафорные примитивы. Мьютексы.
- 20. Вызовы удаленных процедур (RPC). Проблема тупиков. Предотвращение тупика. Обход тупика. Распознавание тупика.

Тема 3 – «Инфокоммуникационные системы и сети»

- 1. Аппаратные и программные методы диагностики сети. Методы оценки эффективности информационных сетей.
- 2. Основы работы сетей VLAN. Режимы работы портов промежуточных сетевых устройств при использовании сетей VLAN.
 - 3. Маршрутизация между сетями VLAN.
 - 4. Стандартные списки контроля доступа. Обратная маска.
 - 5. Расширенные списки контроля доступа. Протокол DHCPv4.
- 6. Автоматическая конфигурация адреса без сохранения состояния (SLAAC). Протокол DHCPv6.
 - 7. Статическое преобразование NAT. Динамическое преобразование NAT.
 - 8. Преобразование адресов портов (РАТ).
 - 9. Обнаружение устройств с помощью протокола CDP и LLDP.
 - 10. Протокол NTP. Протокол Syslog.
 - 11. Концепция и принципы работы протокола VTP.
- 12. Приоритеты использования протоколов TCP и UDP различными приложениями.
 - 13. Основные понятия протокола связующего дерева (STP).
- 14. Принципы агрегации каналов. Протоколы резервирования первого перехода.
- 15. Глобальные сети, методы подключения к глобальным сетям. Технология VPN.
 - 16. Протоколы инкапсуляции в глобальных сетях. Протокол РРР.
- 17. Коммуникационные и моноканальные подсети. Циклические и узловые подсети.
 - 18. Сетевые программные и технические средства информационных сетей.
 - 19. Методы управления паролями. Методы защиты паролей.
 - 20. Методы защиты сети на канальном и сетевом уровнях.

Тема 4 – «Методы и средства проектирования информационных систем»

- 1. Понятие проектирование ИС. Понятие проекта ИС. Основные задачи проектирования.
- 2. Технология модельно-ориентированного проектирования. Сущность обследования предметной области.
- 3. Основные понятия и классификация методов типового проектирования. Техническая структура предметной области.
- 4. Варианты клиент-серверной архитектуры. Преимущества клиент-серверной архитектуры.
- 5. Понятие и содержание технического задания. Понятие и содержание технического проекта.
- 6. Объектная структура предметной области. Выделение информационных объектов предметной области.
 - 7. Понятие CASE-технологии проектирования ИС.
 - 8. Понятие рабочий проект. Содержание рабочего проекта.
 - 9. Структура CASE-средства. Классы CASE-средств.
 - 10. Основные части рабочего проекта. Стратегия выбора CASE-средства.
 - 11. Сущность процесса внедрения ИС. Основные этапы внедрения системы.
- 12. Информационно-логическая модель предметной области. Определение связей между информационными объектами в ИЛМ.
- 13. Понятие технологии проектирования ИС. Основные требования, предъявляемые к выбираемой технологии проектирования.
- 14. Характеристика четырех классов средств проектирования. Жизненный цикл ИС.
- 15. Сущность прототипной технологии (RAD). Основные возможности и преимущества быстрой разработки прототипа ИС.
- 16. Объектно-ориентированные методологии описания предметной области.
- 17. Функционально-ориентированные методологии описания предметной области.
 - 18. Каскадная модель жизненного цикла.
 - 19. Спиральная модель жизненного цикла.
 - 20. Итерационная модель жизненного цикла.

Тема 5 – «Языки программирования»

- 1. Понятие языка программирования. Классификация языков программирования.
- 2. Существующие технологий и языки программирования под Windows. Принципы ООП: наследование, инкапсуляция, полиморфизм.
 - 3. Объектные типы данных. Класс. Данные и свойства класса.
- 4. Конструкторы, деструкторы, параметры this. Методы класса. Перегрузка методов.

- 5. Перегрузка унарных операций класса. Перегрузка бинарных операций класса. Перегрузка операции преобразования типа. Индексаторы. Наследование.
 - 6. Виртуальные методы. Абстрактные классы. Бесплодные классы.
- 7. Интерфейсы (определение, описание, спецификаторы). Работа с объектами через интерфейсы. Операции isu as.
- 8. Интерфейсы и наследование. Атрибуты, пространства имён. Директивы препроцессора. Делегаты. События.
- 9. Строки в языке С#. Способы конструирования строк. Точные строки. Массивы строк. Основные функции для операций со строками.
- 10. Составные типы данных: структуры. Понятие и способы объявления структур. Доступ к полям структуры.
 - 11. Понятие и назначение пространства имен. Описание пространств имен.
 - 12. Основные возможности. NET. Основные компоненты. NET.
 - 13. Коллекции среды. NET Framework. Понятие нумераторов.
 - 14. Коллекция типа ArrayList: назначение и основные операции.
 - 15. Коллекции типа Stack и Queue: назначение и основные операции.
 - 16. Коллекция типа Hashtable: назначение и основные операции.
- 17. Работа с файловой системой. Ввод/вывод данных в файл. Режимы файлов.
 - 18. Динамическая идентификация типов. Понятие и назначение.
- 19. Основные операторы проверки и приведения типов. Использование подсистемы отражений.
- 20. Разработка Windows-приложений в среде. NET Framework. Тип Application. Тип Form.

Тема 6 - «Управление данными»

- 1. Файловый подход к организации информационной базы СОИ сущность подхода, достоинства и недостатки.
 - 2. Обеспечения безопасности и секретности данных.
- 3. Проблемы обеспечения управляемой избыточности и целостности данных.
- 4. Понятие транзакции, свойства транзакции, способы завершения транзакции.
 - 5. Администрирование БД.
- 6. Инфологический и даталогический уровни моделирования предметной области.
 - 7. Объекты, атрибуты, связи.
 - 8. Первичный и вторичные ключи. Основные типы абстракции.
 - 9. Инфологическое моделирование. Модель «сущность-связь».
 - 10. Операции обновления БД.
- 11. Решение проблемы бесконечного ожидания. Способы предотвращения тупиков.

- 12. Основные положения нормализации отношений. Понятие и типы функциональных зависимостей.
- 13. Реляционная модель данных: понятие отношения, домена, кортежа, атрибута.
 - 14. Целостность реляционных баз данных.
 - 15. Язык SQL. Назначения языка. Стандарты SQL. Подмножества языка.
 - 16. Типы данных SQL. Операторы создания базы данных.
 - 17. Язык SQL. Операторы манипулирования данными.
 - 18. Язык SQL. Операторы администрирования БД.
 - 19. Язык SQL. Операторы запросов к БД.
 - 20. Язык SQL. Средства управления транзакциями.