МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный аграрный университет имени И. Т. Трубилина»

М. Р. Кадыров

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

Практикум по расчетно-графическим работам

Краснодар КубГАУ 2017 УДК 621.71(075.8) ББК 34.41 К13

Рецензент:

Е. М. Юдина – канд. техн. наук, доцент (Кубанский государственный аграрный университет)

Кадыров М. Р.

К13 Нормирование точности деталей при изготовлении и сборке : практикум по расчетно-графическим работам / М. Р. Кадыров. – Краснодар : Куб-ГАУ, 2017. – 130 с.

В практикуме изложены понятия основных норм взаимозаменяемости гладких соединений, изложены методики решения заданий, даны варианты заданий по выполнению расчетно-графических работ.

Предназначен для студентов, обучающихся по направлению подготовки 35.03.06 «Агроинженерия», профиль «Технические системы в агробизнесе» (бакалавриат) очной и заочной форм обучения и 23.05.01 «Наземные транспортно-технологические средства» (специалитет).

УДК 621.71(075.8) ББК 34.41

© М. Р. Кадыров, 2017

© ФГБОУ ВО «Кубанский государственный аграрный университет», 2017

ВВЕДЕНИЕ

Эксплуатационные показатели механизмов и машин (долговечность, надежность, точность и т. д.) в значительной мере зависят от правильности выбора посадок, допусков формы и расположения, шероховатости поверхности. В собранном изделии детали связаны друг с другом, и отклонения размеров, формы и расположения осей или поверхностей одной какойлибо из деталей вызывают отклонения у других деталей. Эти отклонения, суммируясь, влияют на эксплуатационные показатели машин и механизмов.

Указания содержат общие рекомендации по выбору посадок, допусков формы и расположения, выбору шероховатости поверхностей элементов типовых деталей машин, построению и расчету конструкторских размерных цепей при ремонте машин.

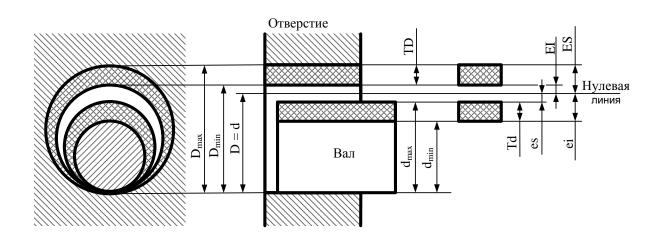
В работе для освещения этих вопросов объединены разрозненные данные, изложенные в специальной литературе, и выделены наиболее важные положения.

Расчетно-графические работы, развернутые задания, исходные данные которых приведены в указаниях, целесообразно выполнить до курсового проектирования по дисциплине «Метрология, стандартизация и сертификация».

В работе приведен ряд справочных таблиц, необходимых при выполнении расчетнографических работ.

1 РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА № 1 «СИСТЕМА ДОПУСКОВ И ПОСАДОК ГЛАДКИХ СОЕДИНЕНИЙ»

1.1 Основные термины, понятия и обозначения


Размер – числовое значение линейной величины (диаметра, длины и т.п.) в выбранных единицах измерения.

Действительный размер – размер элемента, установленный измерением с допустимой погрешностью.

Нулевая линия – линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении полей допусков и посадок.

Вал – термин, условно применяемый для обозначения наружных элементов деталей, включая и нецилиндрические элементы (рисунок 1.1).

Отверстие – термин, условно применяемый для обозначения внутренних элементов деталей, включая и нецилиндрические элементы (рисунок 1.1).

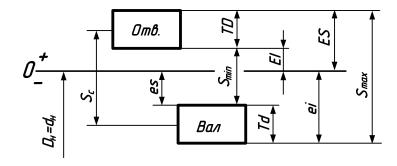
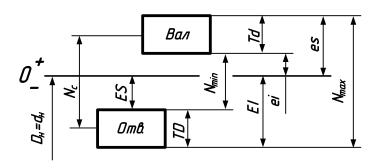
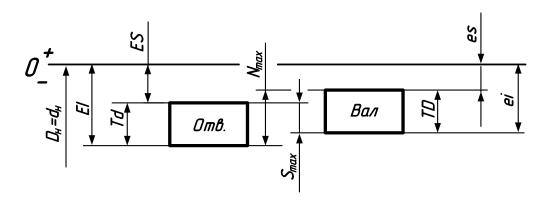

 $\begin{array}{l} D-\text{номинальный размер отверстия; } D_{\text{max}}-\text{максимальный размер отверстия;} \\ D_{\text{min}}-\text{минимальный размер отверстия; } d-\text{номинальный размер вала;} \\ d_{\text{max}}-\text{максимальный размер вала; } d_{\text{min}}-\text{минимальный размер вала;} \\ EI-\text{нижнее отклонение отверстия; } ES-\text{верхнее отклонение отверстия;} \\ ei-\text{нижнее отклонение вала; } es-\text{верхнее отклонение вала;} \\ Td-\text{допуск размера вала; } TD-\text{допуск размера отверстия} \end{array}$

Рисунок 1.1 – Параметры вала и отверстия


Посадка – характер соединения двух деталей, определяемый разностью их размеров до сборки.

Допуск посадки – сумма допусков отверстия и вала, составляющих соединение.


Зазор (S) — разность между размерами отверстия и вала до сборки, если отверстие больше размера вала. *Посадка с зазором* — посадка, при которой всегда образуется зазор в соединении, т.е. наименьший предельный размер отверстия всегда больше наибольшего предельного размера вала или равен ему. При графическом изображении поле допуска отверстия расположено над полем допуска вала (рисунок 1.2a).

а) посадка с зазором

б) посадка с натягом

в) переходная посадка

 S_{min} — наименьший зазор; S_{max} — наибольший зазор; S_c — средний зазор; N_{min} — наименьший натяг; N_{max} — наибольший натяг; N_c — средний натяг;

Рисунок 1.2 – Параметры соединения «вал-отверстие» при различных посадках

Натяг (N) — разность между размерами вала и отверстия до сборки, если размер вала больше размера отверстия. $Посадка \ c$ намягом — посадка, при которой всегда образуется натяг в соединении, т. е. наибольший предельный размер отверстия меньше наименьшего предельного размера вала или равен ему. При графическом изображении поле допуска отверстия расположено под полем допуска вала (рисунок 1.2б).

Переходная посадка – $nocad\kappa a$, при которой возможно получение как зазора так и натяга в соединении, в зависимости от действительных размеров отверстия и вала. При графическом изображении поля допусков отверстия и вала перекрываются полностью или частично (рисунок 1.2в).

1.2 Основные расчетные зависимости

$$D_{\text{max}} = D + ES, \tag{1.1}$$

$$D_{\min} = D + EI, \tag{1.2}$$

$$TD = D_{max} - D_{min} = ES - EI, \qquad (1.3)$$

$$d_{\text{max}} = d + es, \tag{1.4}$$

$$d_{\min} = d + ei, \tag{1.5}$$

$$Td = d_{max} - d_{min} = es - ei, (1.6)$$

$$S_{\min} = D_{\min} - d_{\max} = EI - es, \tag{1.7}$$

$$S_{\text{max}} = D_{\text{max}} - d_{\text{min}} = ES - ei, \qquad (1.8)$$

$$S_c = 0.5(S_{max} + S_{min}),$$
 (1.9)

$$N_{min} = d_{min} - D_{max} = ei - ES, \qquad (1.10)$$

$$N_{\text{max}} = d_{\text{max}} - D_{\text{min}} = es - EI, \tag{1.11}$$

$$N_c = 0.5(N_{max} + N_{min}),$$
 (1.12)

Для достоверного измерения размера необходим ряд условий, одним из которых является температурный режим, то есть температура измеряемой детали и температура средства измерения должны быть равны. В противном случае, возникает погрешность измерения размера детали от температурной деформации.

Погрешность измерения размера детали от температурной деформации:

$$\Delta d = d \left(\alpha_{\pi} \Delta t_{\pi} - \alpha_{cu} \Delta t_{cu} \right), \tag{1.13}$$

где Δd – погрешность измерения;

 α_{π} – коэффициент линейного расширения материала детали;

 α_{cu} – коэффициент линейного расширения материала средства измерения;

 $\Delta t_{\pi} = t_{\pi} - 20$ °C – отклонение температуры детали от нормальной;

 $\Delta t_{cu} = t_{cu} - 20$ °C – отклонение температуры средства измерения от нормальной.

1.3 Допуски и посадки по ЕСДП

Единой системой допусков и посадок (ЕСДП) называется совокупность рядов допусков и посадок, закономерно построенных на основе опыта, теоретических и экспериментальных исследований и оформленных в виде стандартов. Система предназначена для выбора минимально необходимых, но достаточных для практики вариантов допусков и посадок типовых соединений деталей машин, что дает возможность стандартизировать режущие инструменты и калибры, облегчает конструирование, производство и взаимозаменяемость деталей машин, а также обусловливает их качество.

Основное отклонение — одно из двух предельных отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии. Основным является отклонение, ближайшее к нулевой линии.

Квалитет – совокупность допусков, рассматриваемых как соответствующие одному уровню точности для всех номинальных размеров.

Установлено 20 квалитетов, 27 основных отклонений валов и 27 основных отклонений отверстий. Основные отклонения отверстий обозначаются прописными буквами латинского алфавита, валов – строчными.

Схема расположения основных отклонений с указанием квалитетов, в которых рекомендуется их применять, для размеров до 500 мм приведена с небольшими сокращениями на рисунке 1.3. Затемненная область относится к отверстиям. Предельные отклонения размеров валов и отверстий приведены в таблицах A1 и A2 приложения A. Все отклонения приведены для температуры $20\,^{\circ}\mathrm{C}$.

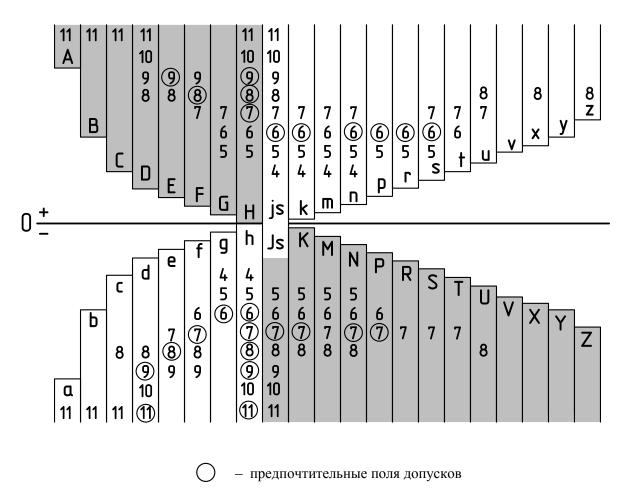


Рисунок 1.3 – Схема расположения основных отклонений

Предельные отклонения размеров на чертежах следует указывать согласно стандарту, при этом следует руководствоваться следующими правилами.

- 1 Предельные отклонения размеров следует указывать непосредственно после номинальных размеров (46f8, $46f8(^{-0,025}_{-0,064})$, $46^{-0,025}_{-0,064}$).
- 2 Предельные отклонения линейных и угловых размеров относительно низкой точности допускается не указывать непосредственно после номинальных размеров, а оговаривать общей записью в технических требованиях чертежа. Например, «H14, h14, $\pm \frac{\text{IT}14}{2}$ », что означает, неуказанные предельные отклонения отверстий должны быть выполнены по H14, валов по h14, прочие размеры должны иметь симметричные отклонения $\pm \frac{\text{IT}14}{2}$. Данная

запись одновременно устанавливает предельные отклонения радиусов закруглений, фасок, углов с неуказанными допусками.

- 3 При указании предельных отклонений предпочтение следует отдавать условному обозначению полей допусков (46f8, 25H7, 95js10).
- 4 При указании предельных отклонений условными обозначениями обязательно указывать их числовые значения в следующих случаях:
- при назначении предельных отклонений размеров, не включенных в ряды нормальных линейных размеров по ГОСТ 6636 ($25.8^{+0.084}$, $46.25^{-0.025}_{-0.064}$);
- при назначении предельных отклонений, условные обозначения которых не предусмотрены в ГОСТ 25347 (49 $_{-0.1}$, 25 \pm 0,2);
- при назначении предельных отклонений размеров уступов с несимметричным полем допуска (рисунок 1.4);

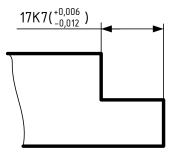


Рисунок 1.4 – Указание предельных отклонений размера уступа с несимметричным полем допуска

– при указании рабочих размеров на ремонтных чертежах (рисунок 1.5).

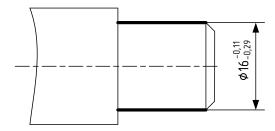


Рисунок 1.5 – Указание рабочего размера на ремонтном чертеже

5 Предельные отклонения угловых размеров указывают только числовыми значениями $(35^{\circ}\pm30', 28^{\circ}\pm1^{\circ})$.

1.4 Контрольные задания расчетно-графической работы № 1

Цель заданий — научиться находить по справочным таблицам предельные отклонения размеров для отверстия и вала, рассчитывать предельные размеры отверстия и вала, определять погрешность размера от температурной деформации.

Залание № 1

Определить годность трех валов или отверстий по результатам их измерений, установить вид брака — исправимый или неисправимый. Определить d, d_{max} , d_{min} , d_c , ei, ei,

Пример решения задания № 1.

Исходные данные:

Обозначение на чертеже: 46f8.

Действительные размеры: $d_1 = 45,968$ мм; $d_2 = 45,981$ мм; $d_3 = 45,925$ мм.

Решение.

Предельные отклонения размера определим, пользуясь таблицей А.1 приложения А.

Таблица 1.1 – Размерный анализ размера

Размер на чертеже	d, мм	$46f8(^{-0,025}_{-0,064})$
Номинальный размер	d (D), mm	46
Максимальный размер	d _{max} (D _{max}), мм	45,975
Минимальный размер	d _{min} (D _{min}), MM	45,936
Средний размер	d _c (D _c), мм	45,9555
Верхнее отклонение	es (ES), мкм	-25
Нижнее отклонение	еі (EI), мкм	-64
Среднее отклонение	е _с (Е _с), мкм	-44,5
Допуск размера	Td (TD), MKM	39

Таблица 1.2 – Определение годности деталей

Действительный	200000000	Голон (+ -)	Брак			
размер	Значение, мм	Годен (+, -)	исправимый	неисправимый		
$d_1(D_1)$	45,968	+				
$d_2(D_2)$	45,981	_	+			
$d_3(D_3)$	45,925	_		+		

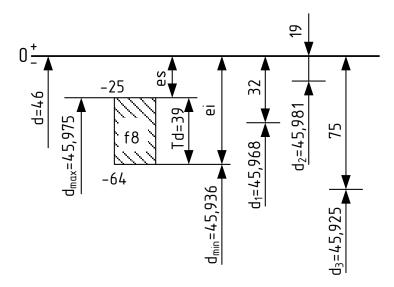


Рисунок 1.6 – Схема поля допуска

Варианты для задания № 1 расчетно-графической работы № 1 приведены в таблице 1.3.

Таблица 1.3 — Варианты для задания № 1

Donwaya	Ogogranama va vantava	Действительный размер, мм				
Вариант	Обозначение на чертеже	$d_1(D_1)$	$d_2(D_2)$	d ₃ (D ₃)		
1	110f7	109,958	109,930	110,012		
2	105h6	105,002	104,981	104,977		
3	125k6	125,005	125,000	124,991		
4	100js6	100,009	100,015	99,955		
5	85u8	85,200	85,120	85,110		
6	24h12	23,98	23,81	24,01		
7	85H8	85,000	85,060	85,035		
8	8P7	7,965	7,995	8,005		
9	220R7	219,980	219,856	220,005		
10	180H7	180,045	180,068	180,021		
11	80u8	80,13	80,18	80,05		
12	110E8	110,126	110,070	109,995		
13	100F9	100,130	100,075	99,897		
14	16n7	16,040	16,022	16,05		
15	55M6	54,980	54,981	55,012		
16	38r6	38,035	38,020	37,985		
17	3D8	3,002	2,995	3,040		
18	28К7	27,928	27,994	28,006		
19	131h12	131,021	130,825	130,602		
20	66D9	66,090	66,205	66,151		
21	46a11	45,725	45,902	46,001		
22	155M6	154,999	155,025	154,934		
23	18c8	18,121	17,895	17,802		
24	98H8	98,024	98,120	98,035		
25	171f6	171,031	171,001	170,953		
26	35u8	34,965	35,202	35,064		
28	302E8	302,155	302,221	302,305		
27	28k6	28,115	27,998	27,005		
29	58P6	58,031	27,925	57,985		
30	45H6	44,984	45,058	45,007		
31	38H7	38,030	38,065	37,987		
32	84k7	84,121	84,052	84,008		
33	51n7	51,021	51,099	51,054		
34	70s7	70,045	70,098	70,062		
35	50U8	49,999	49,925	49,895		
36	30F9	30,112	30,002	30,045		
37	171js8	171,005	170,922	170,965		
38	144N7	143,965	144,021	143,931		
39	75e7	74,85	74,35	74,05		

Продолжение таблицы 1.3

Domyyoyy	Of covered ve venters	Действительный размер, мм					
Вариант	Обозначение на чертеже	$d_1(D_1)$	$d_2(D_2)$	$d_3(D_3)$			
40	36x8	36,120	36,168	36,105			
41	2H14	1,95	2,20	2,00			
42	40H9	40,038	40,075	39,998			
43	71M7	71,002	70,952	70,985			
44	4K8	3,996	3,980	4,005			
45	105M8	104,994	104,955	105,052			
46	160h6	159,978	159,926	160,025			
47	10Js8	10,009	10,003	9,990			
48	50t6	50,060	50,022	49,995			
49	250E8	250,150	250,180	250,005			
50	25u7	25,047	25,060	24,987			
51	12h6	11,980	11,995	12,005			
52	20n7	20,020	20,06	19,998			
53	82x8	82,121	82,184	82,352			
54	9R7	9,023	8,922	8,991			
55	284m6	284,086	284,110	284,051			
56	61g5	61,001	60,996	61,022			
57	125F8	125,115	125,101	125,093			
58	52r6	52,002	52,110	52,056			
59	195T7	194,986	195,012	194,852			
60	23D10	23,052	23,090	23,130			
61	87n7	87,012	87,124	87,065			
62	49Js9	48,095	49,102	49,025			
63	64d10	64,031	63,620	63,782			
64	230s7	230,150	230,854	230,202			
65	11H7	11,000	10,985	11,058			
66	32s5	32,054	32,099	32,087			
67	202e7	202,022	201,825	201,965			
68	89H8	89,121	89,054	89,002			
69	18m5	18,025	18,002	18,010			
70	82Js8	82,005	82,065	82,014			
71	105u8	105,205	105,187	105,122			
72	35F8	35,025	35,064	35,085			
73	28d9	28,002	27,965	27,921			
74	62h9	62,005	61,984	61,954			
75	43t6	43,002	43,025	43,062			

Задание № 2

Определить вид допуска на размеры. Обозначить: вал - B, отверстие - O, не вал и не отверстие - H. (Рисунки для всех вариантов даны в приложении Б).

Пример решения задания № 2.

Исходные данные: рисунок 1.7.

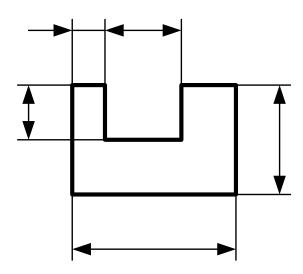


Рисунок 1.7 – Эскиз к примеру задания № 2

Решение.

Решение представлено на рисунке 1.8.

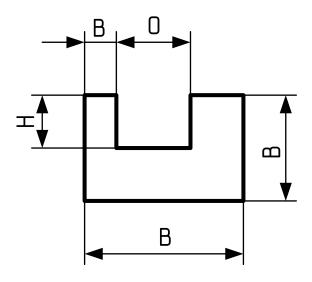


Рисунок 1.8 – Эскиз решения примера задания № 2

Варианты для задания № 2 приведены в приложении Б.

Задание № 3

На чертеже записано: «Неуказанные предельные отклонения размеров: отверстий — H14, валов — h14, остальных $\pm \frac{IT14}{2}$ ». Определить предельные размеры и величины допусков свободных размеров деталей, указанных на рисунке.

Пример решения задания № 3.

Исходные данные: рисунок 1.9.

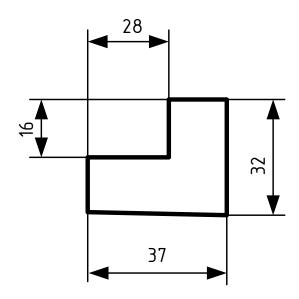


Рисунок 1.8 – Эскиз к примеру задания № 3

Решение.

Решение проводим согласно таблиц A1 и A2 приложения A. Результат представлен на рисунке 1.9.

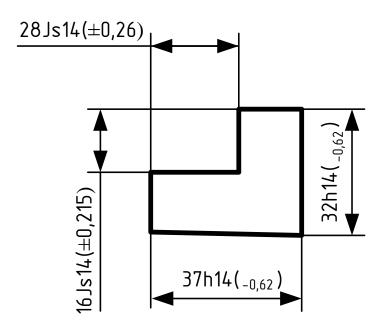
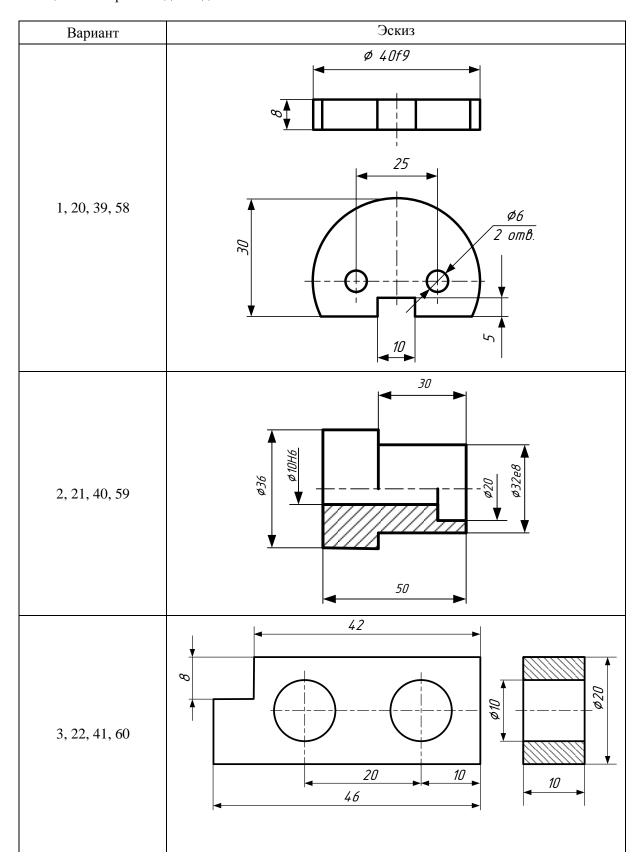
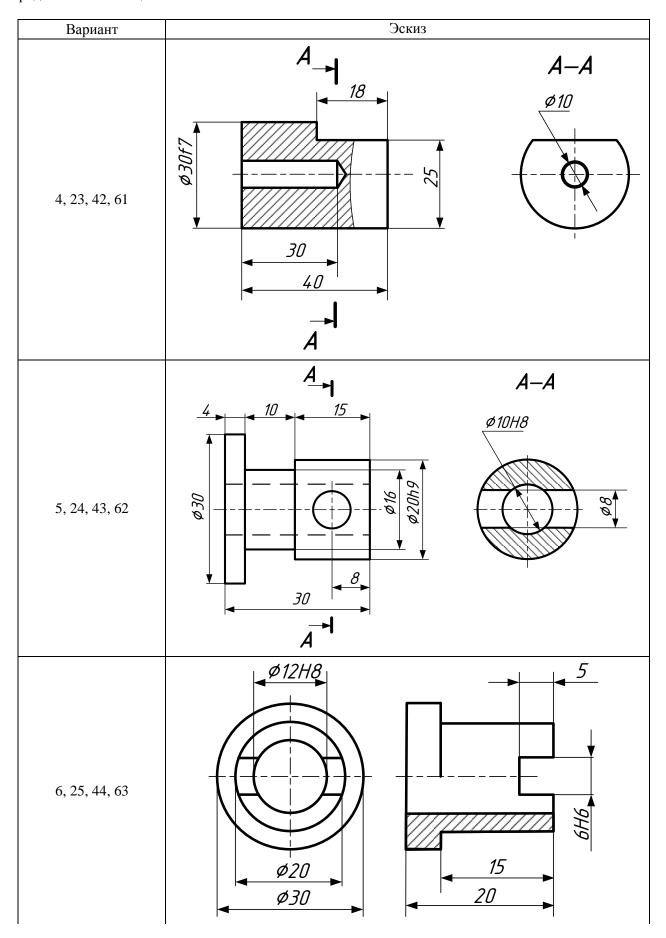




Рисунок 1.9 – Эскиз решения примера задания № 3

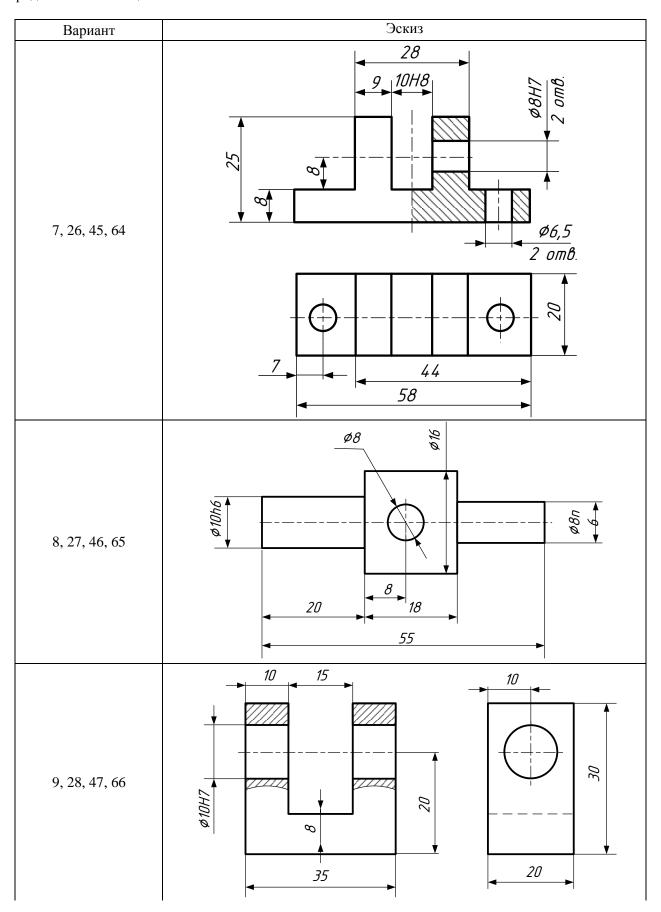
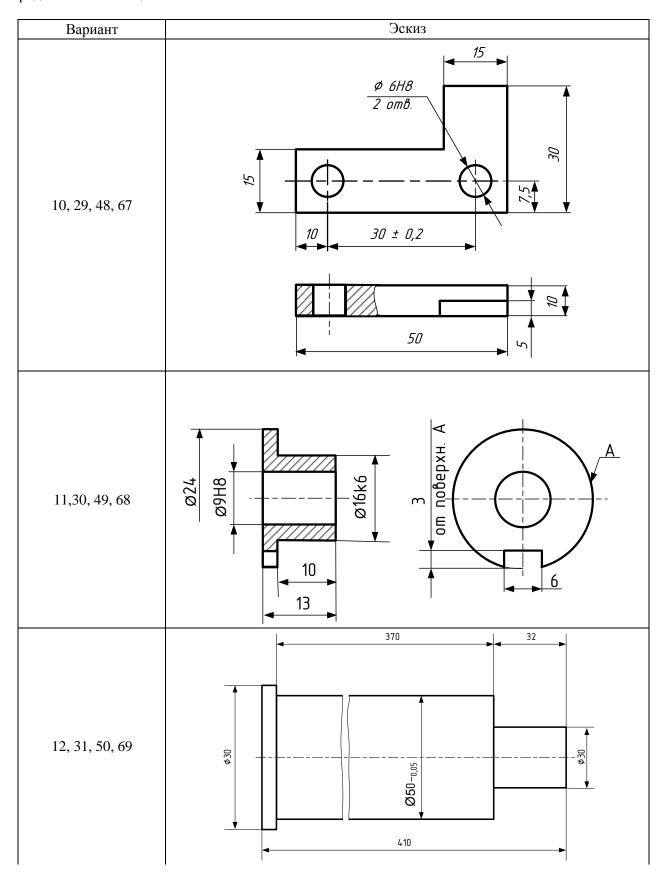
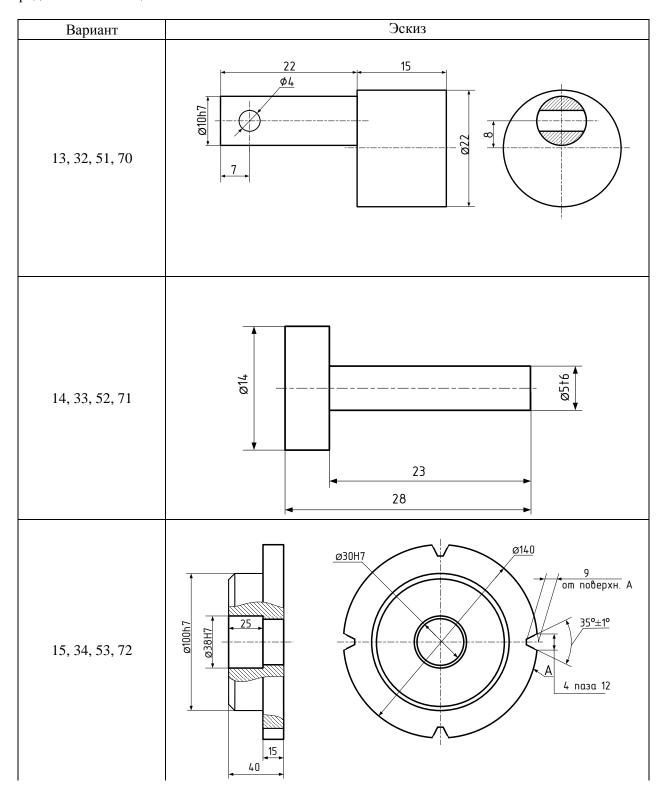
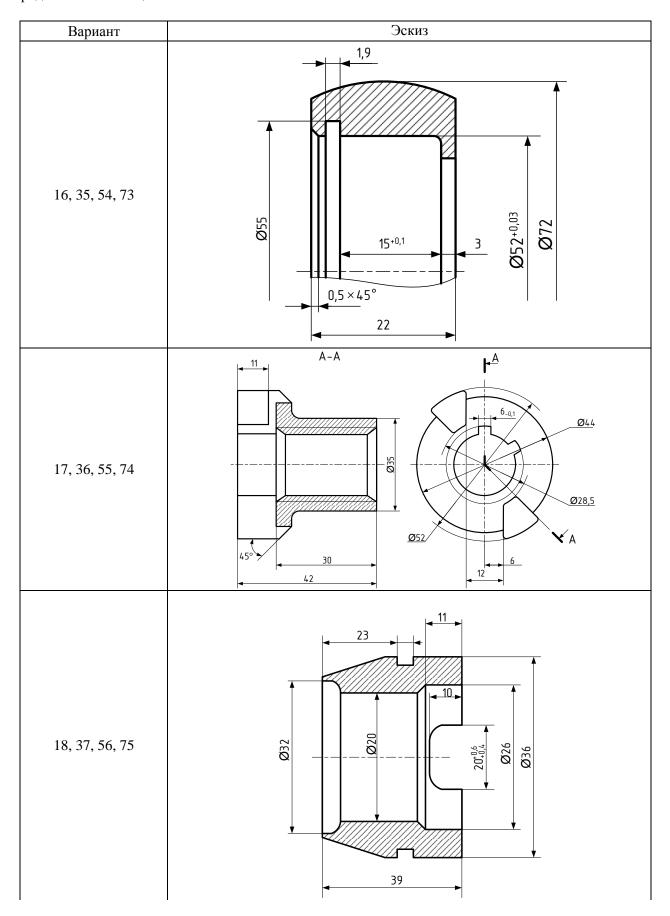
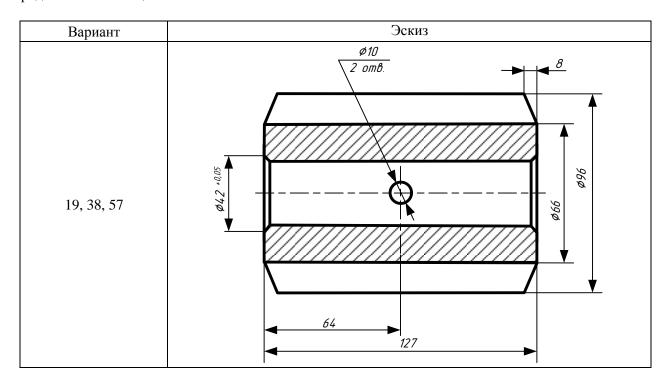

Варианты для задания № 3 приведены в таблице 1.4.

Таблица 1.4 — Варианты для задания № 3




Продолжение таблицы 1.4


Продолжение таблицы 1.4


Продолжение таблицы 1.4

Продолжение таблицы 1.4

Продолжение таблицы 1.4

Задание № 4

Определить квалитет, по которому назначен допуск на изготовление.

Пример решения задания № 4.

Исходные данные:

Номинальный диаметр: 164 мм. Величина допуска: 630 мкм.

Решение.

Определим по таблице A1 приложения A квалитет для диаметра 164 мм и величины допуска 630 мкм - 13.

Варианты для задания № 4 приведены в таблице 1.5.

Таблица 1.5 – Варианты для задания № 4

Вариант	Номинальный диаметр, мм	Величина допуска, мкм	Вариант	Номинальный диаметр, мм	Величина допуска, мкм	Вариант	Номинальный диаметр, мм	Величина допуска, мкм
1	8	6	26	195	290	51	66	1900
2	40	16	27	13	8	52	121	100
3	320	89	28	49	39	53	19	84
4	32	160	29	105	35	54	408	2500
5	16	27	30	42	620	55	287	23
6	50	11	31	14	110	56	31	16

Продолжение таблицы 1.5

Вариант	Номинальный диаметр, мм	Величина допуска, мкм	Вариант	Номинальный диаметр, мм	Величина допуска, мкм	Вариант	Номинальный диаметр, мм	Величина допуска, мкм
7	250	46	32	165	100	57	68	740
8	80	190	33	120	140	58	145	630
9	400	140	34	34	390	59	87	87
10	2	4	35	8	150	60	38	16
11	12	43	36	316	140	61	81	22
12	63	30	37	225	720	62	182	72
13	280	52	38	102	220	63	420	97
14	2,5	6	39	22	33	64	66	74
15	360	140	40	158	400	65	2	4
16	44	62	41	345	360	66	38	39
17	258	1300	42	51	46	67	227	290
18	18	430	43	29	13	68	195	1850
19	84	35	44	462	27	69	105	870
20	20	21	45	210	115	70	11	700
21	125	250	46	124	40	71	287	320
22	4	18	47	80	190	72	44	1000
23	80	19	48	202	29	73	14	110
24	340	140	49	8	36	74	33	100
25	92	140	50	258	81	75	208	1850

Задание № 5

Температура воздуха в ремонтном цехе $+20\,^{\circ}$ С. Средства измерения, изготовленные из стали, имеют ту же температуру. Определить погрешность измерения размера детали и погрешность от температурной деформации (средние значения коэффициентов линейного расширения α приведены в таблице A3). Сравнить погрешность от температурной деформации детали с допуском размера.

Пример решения задания № 5.

Исходные данные:

Номинальный размер: 140 мм. Обозначение поля допуска: m6. Температура детали: +40 °C.

Материал детали: титановый сплав

Решение.

Погрешность измерения размера детали от температурной деформации определим по формуле (1.13), при этом:

- номинальный размер d = 140 мм;
- коэффициент линейного расширения материала детали $\alpha_{\text{д}} = 8 \cdot 10^{-6} \text{ град}^{-1}$ (таблица A3);
- коэффициент линейного расширения материала средства измерения $\alpha_{cu} = 12 \cdot 10^{-6} \, \mathrm{град}^{-1}$ (таблица A3);

- температура детали $t_{\text{д}} = +40\,^{\circ}\text{C}$;
- температура средства измерения $t_{cu} = 20$ °C.

Отклонение температуры средства измерения от нормальной

$$\Delta t_{\text{CM}} = +20 - 20 = 0.$$

Отклонение температуры детали от нормальной

$$\Delta t_{\pi} = +40 - 20 = 20$$
 °C.

Погрешность измерения размера детали от температурной деформации

$$\Delta d = 140 (8 \cdot 10^{-6} \cdot 20 - 12 \cdot 10^{-6} \cdot 0) = 0,0224 \text{ MM}.$$

Для диаметра 140 мм и поля допуска m6 верхнее отклонение ei = +40 мкм, нижнее отклонение es = +15 мкм, допуск размера Td = 25 мкм = 0,025 мм.

Сравниваем погрешность от температурной деформации детали с допуском размера

$$\frac{\Delta d}{Td}$$
100 % = $\frac{0,0224}{0.025}$ 100 % = 89,6 %.

Варианты задания № 5 приведены в таблице 1.6.

Таблица 1.6 – Варианты для задания № 5

Вариант	Номинальный размер, мм	Обозначение поля допуска	Температура детали, ⁰ С	Материал детали	Вариант	Номинальный размер, мм	Обозначение поля допуска	Температура детали, ⁰ С	Материал детали
1	180	g6	+36	Сталь 30	39	195	s6	+40	Ал.сплав
2	360	h6	+45	Class 30	40	320	k6	+42	АЛ1
3	200	t6	+35	Бронза	41	132	Js6	+36	Чугун СЧ15
4	160	js6	+42	БрС30	42	59	js7	+45	Чугун С 113
5	250	s6	+38	Титановый	43	241	z6	+35	Стекло
6	280	k6	+40	сплав	44	87	Js6	+42	CTERJIO
7	320	f7	+37	Потиту П62	45	303	K6	+38	Потупу П62
8	220	N6	+41	Латунь Л63	46	98	z6	+42	Латунь Л63
9	400	H7	+39	Титановый	47	312	js6	+40	Hymyry CH15
10	190	P6	+42	сплав	48	85	Н6	+42	Чугун СЧ15
11	360	H7	+40	Сталь 45	49	222	P7	+36	Стекло
12	190	Js6	+42	Сталь 43	50	401	Js6	+45	CTERJIO
13	220	K6	+32	Ал. сплав	51	154	Js6	+49	Сталь 45
14	280	Js7	+41	АЛ1	52	480	p7	+37	CTallb 43
15	300	K7	+39	Бронза	53	266	N7	+41	Ал.сплав
16	200	N7	+40	БрС30	54	155	P6	+39	АЛ1
17	160	Н6	+38	Станта	55	178	H7	+42	Бронза
18	400	P7	+40	Стекло	56	212	Js6	+40	БрС30

Продолжение таблицы 1.6

Вариант	Номинальный размер, мм	Обозначение поля допуска	Температура детали, ⁰ С	Материал детали	Вариант	Номинальный размер, мм	Обозначение поля допуска	Температура детали, ⁰ С	Материал детали
19	320	Js6	+37	Потуту П62	57	95	n6	+42	Стами
20	180	K6	+39	Латунь Л63	58	310	Js6	+45	Стекло
21	209	n7	+40	Титановый	59	192	p7	+35	Потупу П62
22	122	h6	+42	сплав	60	126	K6	+42	Латунь Л63
23	312	f7	+32		61	345	Js7	+38	
24	369	N6	+41	Сталь 45	62	290	K7	+40	Чугун СЧ15
25	175	H7	+39		63	215	z6	+40	
26	110	n7	+35	Чугун СЧ15	64	169	js6	+42	Ал.сплав
27	50	h6	+28	чугун Сч13	65	100	s6	+32	АЛ1
28	200	H7	+32	Стекло	66	161	h6	+39	Бронза
29	80	n6	+27	CIERJIO	67	254	z6	+42	БрС30
30	300	Js6	+35	Бронза	68	286	js6	+40	Чугун СЧ15
31	140	p7	+40	БрС30	69	308	k6	+42	чугун Сч13
32	120	N7	+30	Сталь 30	70	214	Js6	+32	Сталь 45
33	32	k6	+18	Class 30	71	144	Js6	+42	Class 45
34	90	Js6	+25	Стекло	72	292	K6	+40	Латунь Л63
35	100	js7	+16	CIERJIO	73	356	h6	+42	
36	128	z6	+41		74	103	z6	+45	Гранов
37	245	js6	+39	Сталь 45	75	191	ic6	+35	Бронза БрС30
38	425	s6	+42		13	171	js6	+33	БрСЗО

2 РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА № 2 «ПОГРЕШНОСТИ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ»

Любую деталь можно представить как совокупность геометрических, идеально точных объемов, имеющих цилиндрические, плоские, конические, эвольвентные и другие поверхности. Например, вал, в общем случае, образован сочетанием ряда цилиндров. В процессе изготовлении деталей и эксплуатации машин возникают погрешности не только размеров, но также формы и расположения номинальных поверхностей. Таким образом, в чертежах форму деталей задают идеально точными номинальными поверхностями, плоскостями, профилями. Изготовленные детали имеют реальные поверхности, плоскости, профили, которые отличаются от номинальных отклонениями формы и расположении.

2.1 Основные понятия и обозначения

Отклонением формы поверхности или профиля называют отклонение формы реальной поверхности (реального профиля) от формы номинальной поверхности (номинального профиля). В общем случае в отклонение формы входит волнистость поверхности (профиля) и не входит шероховатость. Отклонения формы поверхностей (профиля) отсчитывают от точек реальной поверхности (профиля) до прилегающих поверхности, прямой, профиля по нормали к ним.

Прилегающая плоскость – плоскость, соприкасающаяся с реальной поверхностью и расположенная так, чтобы отклонение от нее до наиболее удаленной точки реальной поверхности в пределах нормируемого участка имело минимальное значение.

Прилегающая прямая – прямая, соприкасающаяся с реальным профилем и расположенная так, чтобы отклонение от нее до наиболее удаленной точки реального профиля в пределах нормируемого участка имело минимальное значение.

Прилегающая окружность — окружность минимального диаметра, описанная вокруг реального профиля наружной поверхности вращения, или максимального диаметра, вписанная в реальный профиль внутренней поверхности вращения.

Прилагающий цилиндр — цилиндр минимального диаметра, описанный вокруг реальной наружной поверхности, или максимального диаметра, вписанный в реальную внутреннюю поверхность.

Номинальное расположение поверхности, оси или профиля определяется номинальными линейными или угловыми размерами между рассматриваемой поверхностью (прямой, профилем) и базой. Базой называют элемент детали (поверхность, ось, точку), по отношению к которому заданы допуски расположения. Если база не задана, то номинальное положение рассматриваемых поверхностей (прямых, профилей) определяется номинальными размерами между ними, а реальное расположение тех же рассматриваемых элементов определяется действительными линейными или угловыми размерами.

Допуски формы и расположении поверхностей установлены стандартом в 16-ти степенях точности (степени точности обозначают в порядке убывания 1, 2, ...).

Для каждого вида допуска формы и расположения установлен определенный знак (таблица 2.1).

Условное обозначение допуска содержит знак и числовое значение (рисунки 2.1, 2.2, 2.3). Эти данные вписывают в рамку, разделенную на две или три части. Рамку соединяют с контурной или выносной линией изделия.

Таблица 2.1 – Допуски формы и расположения поверхностей

Группа	Допуск	Знак	Группа	Допуск	Знак	
191	Прямолинейности			Радиального и торцового		
Mdoc	Плоскостности		4bi	биения; биения в	1	
ки ф	Круглости	0	vdoq	заданном направлении		
Допуски формы	Цилиндричности					
Ĭ	Профиля продольного сечения		кнос.	Полного радиального и торцового биения	21	
	Параллельности	//	жені	T V		
ВИНЗ	Перпендикулярности		опуски поверхн и расположения			
ложе	Наклона	_	опус 1 рас	Формы заданного профиля		
аспо	Соосности	0	Суммарные допуски поверхностей формы и расположения			
ски располож поверхностей	Симметричности	=				
Допуски расположения поверхностей	Позиционный 🗡 💢		Сум	Формы заданной поверхности		
7						

Примечание – Допуски соосности, симметричности, пересечения осей, позиционные допуски указываются обязательно или в диаметральном или в радиусном выражении

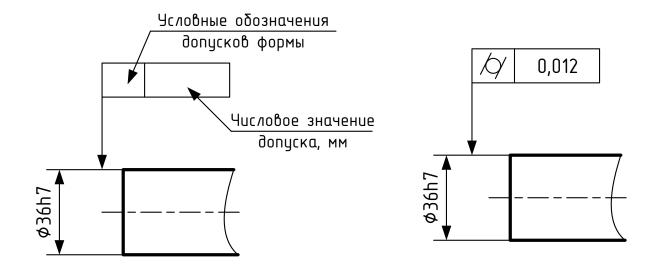


Рисунок 2.1 – Условные обозначения допусков формы

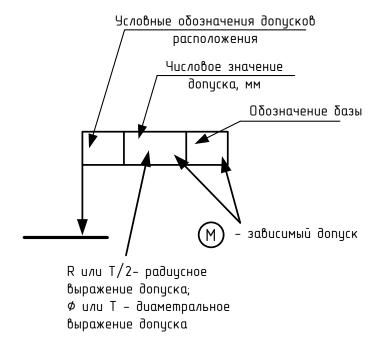


Рисунок 2.2 – Условные обозначения допусков расположения

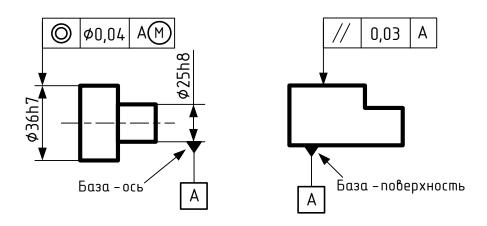


Рисунок 2.3 – Условные обозначения суммарных допусков формы и расположения

Допуски могут быть заданы на ограниченной длине или одновременно на всей длине и на ограниченном участке. Базы обычно обозначают затемненным треугольником, и соединяют с рамкой, в которой дано буквенное обозначение базы или условное обозначение допуска. Обозначение допусков формы и расположения и определение их параметров показано на рисунках 2.4, 2.5, 2.6 и 2.7.

Частными видами отклонений от плоскостности являются выпуклость и вогнутость. Отклонение формы цилиндрических поверхностей характеризуется отклонением от цилиндричности, которая включает отклонения от круглости поперечных сечений и профиля продольного сечения. К частным видам отклонения от круглости относятся овальность и огранка. При огранке реальный профиль представляет собой многогранную фигуру. Отклонение профиля в продольном сечении цилиндрических поверхностей характеризуется непрямолинейностью образующих и делится на конусообразность, бочкообразность и седлообразность.

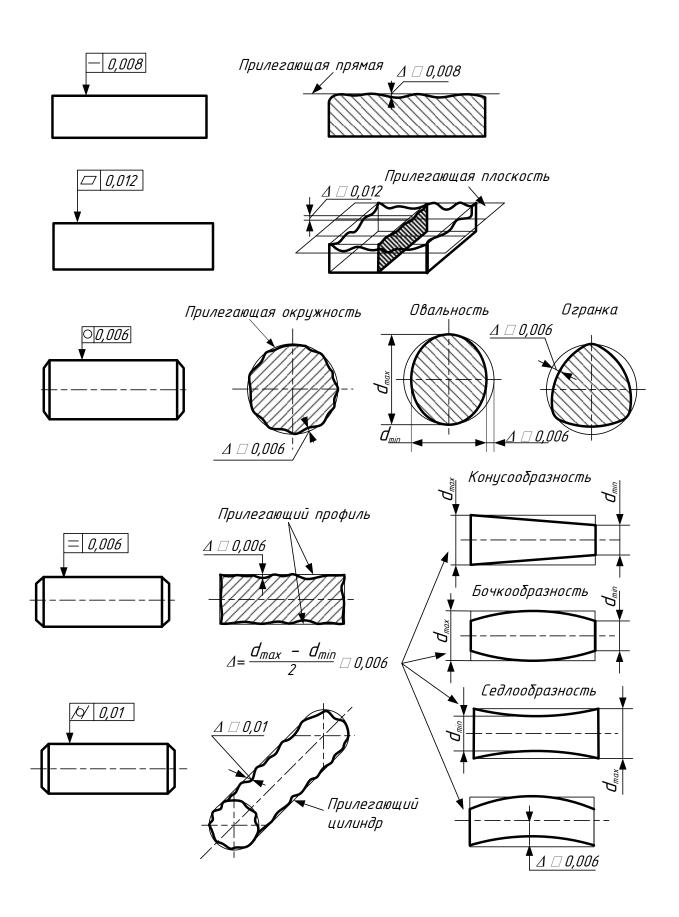


Рисунок 2.4 – Обозначения и определение параметров допусков формы

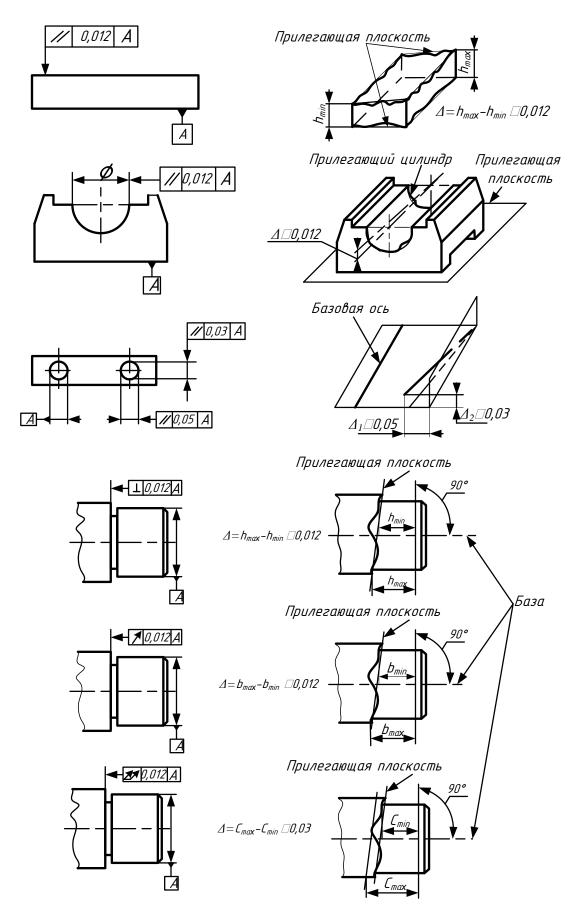


Рисунок 2.5 – Обозначения и определение параметров допусков расположения и суммарных допусков

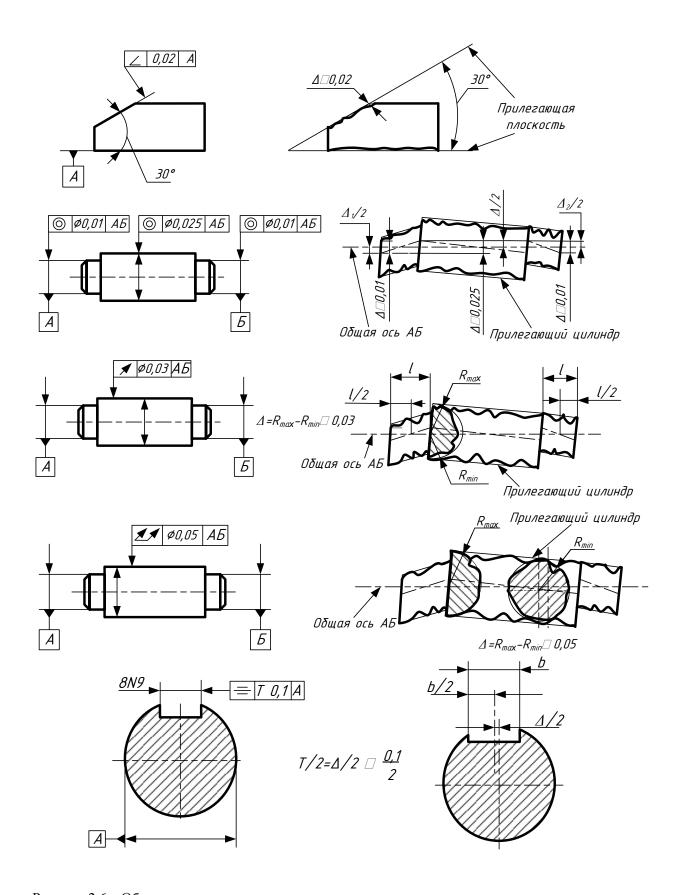


Рисунок 2.6 – Обозначения и определение параметров допусков расположения и некоторых суммарных допусков

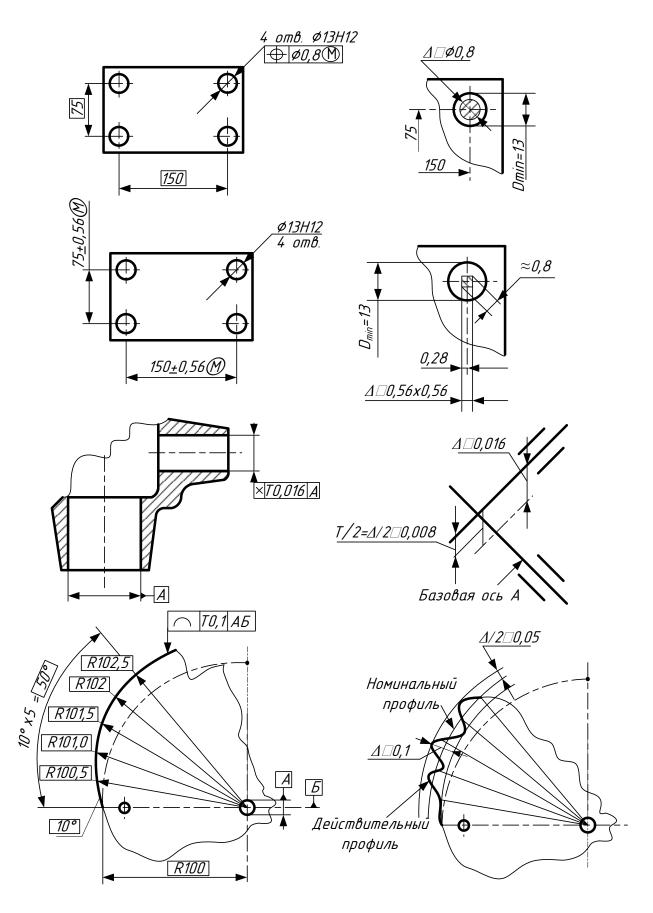


Рисунок 2.7 – Обозначения и определение параметров допусков расположения и некоторых суммарных допусков

Различают зависимые и независимые допуски расположения (формы). Зависимым называют переменный допуск расположения, который указывается на чертежах своим минимальным значением, и может быть превышен на величину предельных отклонений вала или отверстия. Зависимые допуски расположения и формы обозначают условным знаком М, который помещают в рамке вместе с допуском или базой вместо базы или иными способами. Независимым называют допуск расположения (формы), постоянный для всех одноименных деталей и не зависящий от действительных размеров рассматриваемых поверхностей.

Овальность определяется по формуле (рисунок 2.8):

- для вала:

$$\delta_{\text{OB}} = \frac{d_{\text{max}} - d_{\text{min}}}{2}; \qquad (2.1)$$

- для отверстия:

$$\delta_{\text{OB}} = \frac{D_{\text{max}} - D_{\text{min}}}{2} \,. \tag{2.2}$$

Величина огранки определяется по формуле (рисунок 2.9):

$$\delta_{\rm orp} = \frac{\Delta}{K},\tag{2.3}$$

где Δ – величина показаний отсчетного устройства, мм;

К – передаточный коэффициент (таблица А4).

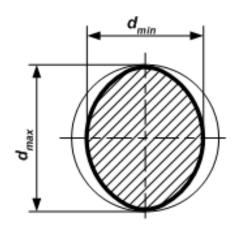


Рисунок 2.8 – Определение овальности

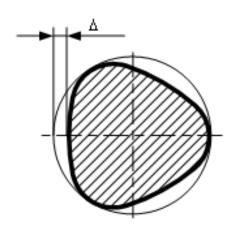


Рисунок 2.9 – Определение огранки

Конусообразность, бочкообразность и седлообразность рассчитывается по формуле (рисунок 2.10):

$$\delta = \frac{d_{\text{max}} - d_{\text{min}}}{2}.$$
 (2.4)

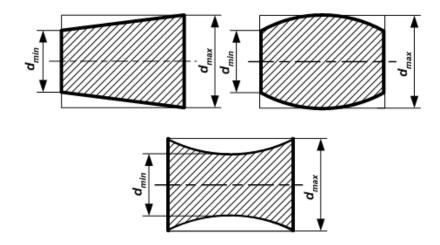


Рисунок 2.10 – Определение конусообразности, бочкообразности и седлообразности

2.2 Контрольные задания расчетно-графической работы № 2

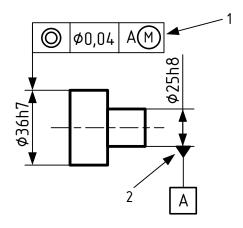
Цель заданий — научиться определять допуски формы и расположения по справочным таблицам, обозначать их на чертежах, рассчитывать их по результатам измерений.

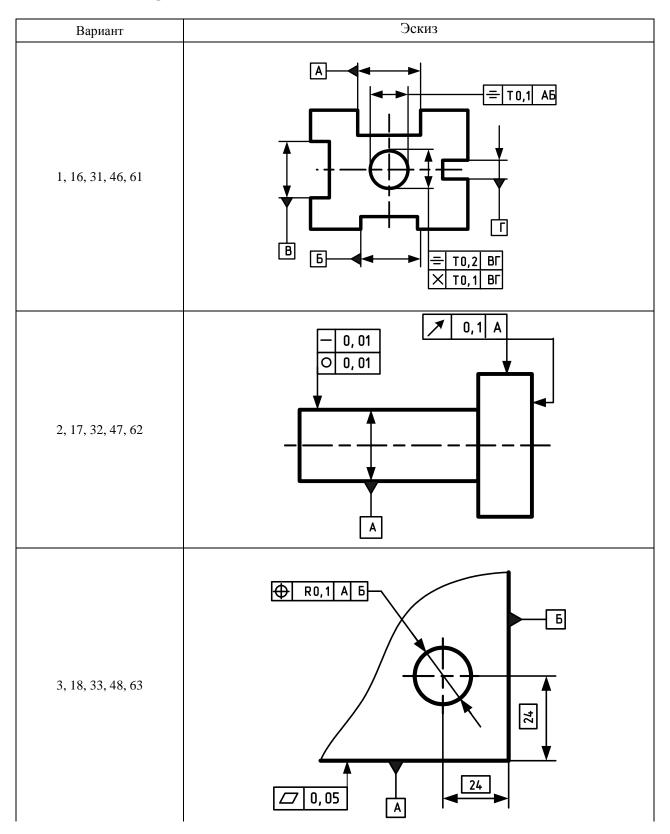
Задание № 1

Расшифровать условные обозначения предельных отклонений формы и расположения поверхностей на эскизе.

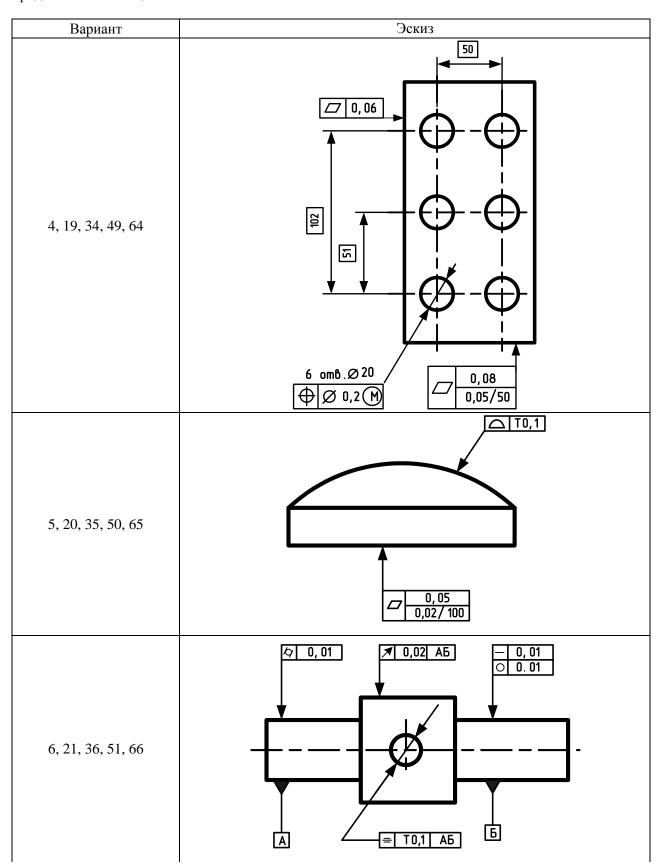
Пример решения задания № 1.

Исходные данные: рисунок 2.11.

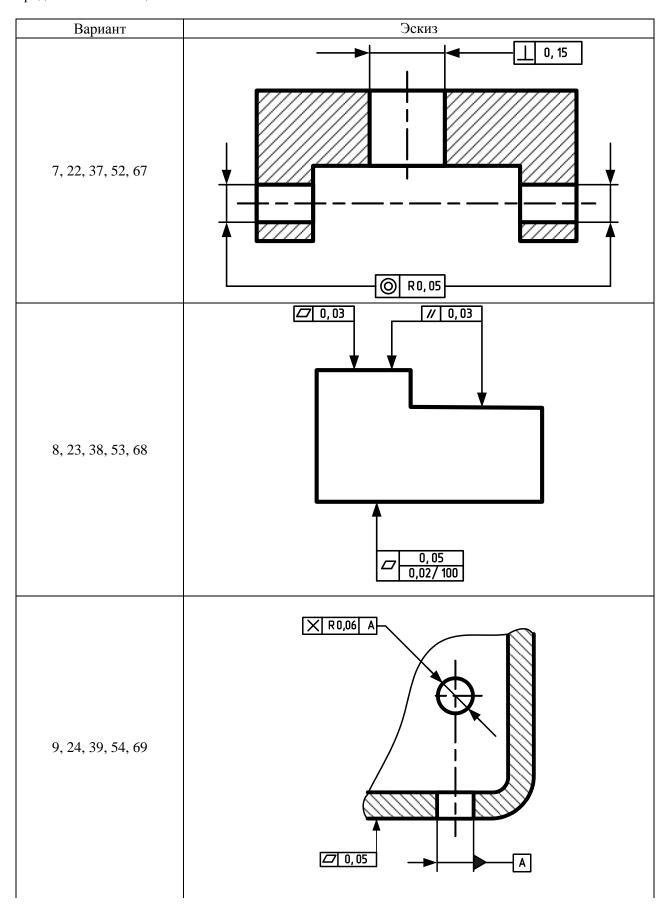


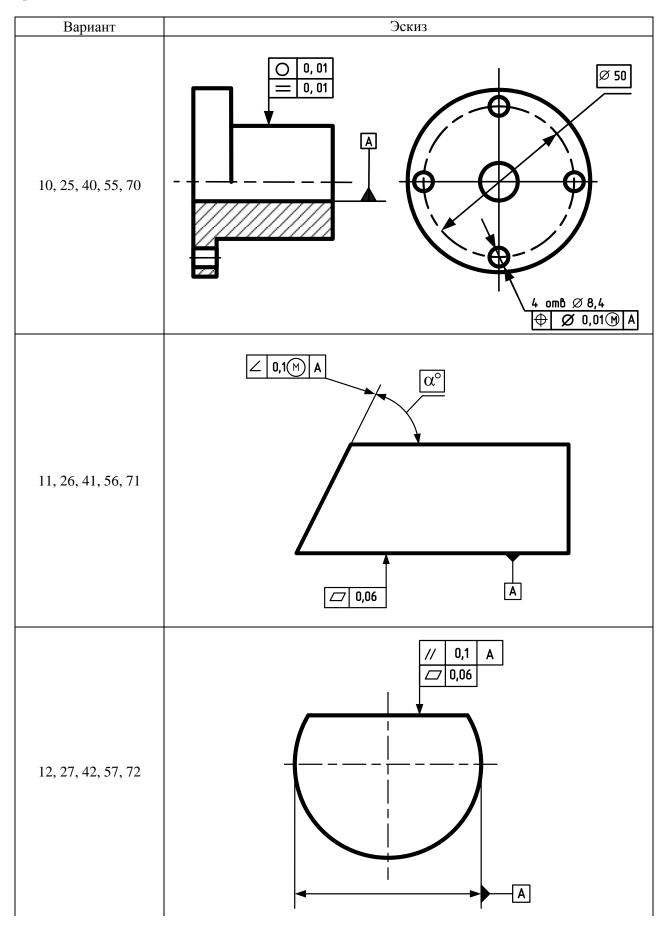

Рисунок 2.11 – Эскиз к примеру задания № 1

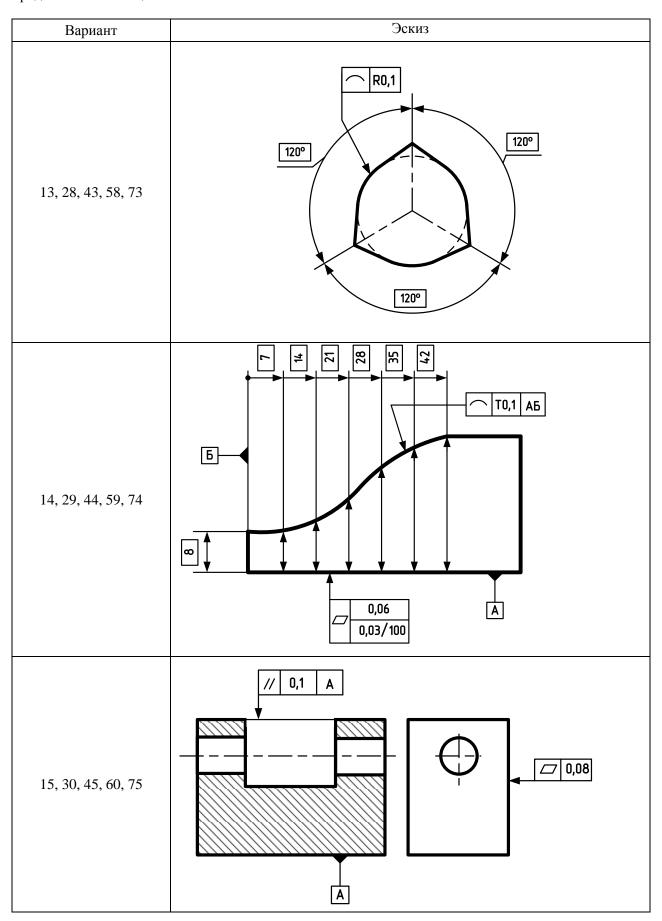
Решение.


- 1 допуск отклонения от соосности не более 0,04 мм (в диаметральном выражении) относительно базовой оси А поверхности Ф25 мм. Допуск зависимый.
 - 2 обозначение базы А оси поверхности Ф25 мм.

Варианты для задания № 1 приведены в таблице 2.2.


Таблица 2.2 — Варианты для задания N = 1


Продолжение таблицы 2.2


Продолжение таблицы 2.2

Продолжение таблицы 2.2

Продолжение таблицы 2.2

Задание № 2

Нанести на эскизе условными обозначениями указанных требований к отклонению формы или расположению поверхностей.

Пример решения задания № 2.

Исходные данные: Нанести на эскизе условными обозначениями требования к отклонению от соосности оси поверхности А относительно оси поверхности Б в зависимости от заданных диаметров и степени точности 5 на отклонение расположения поверхностей (рисунок 2.12).

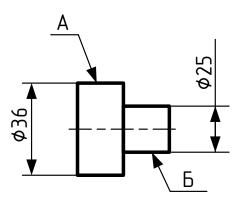


Рисунок 2.12 – Эскиз детали к примеру задания № 7

Решение.

По таблице A5 определяем допуск соосности для диаметра 36 мм и степени точности 5 –12 мкм в диаметральном выражении. База A – ось поверхности Б (рисунок 2.13).

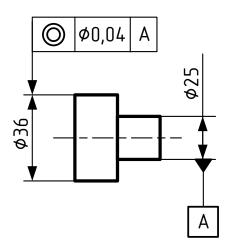


Рисунок 2.13 – Эскиз решения примеру задания № 7

Вариант 1–10. Нанести на эскизе условными обозначениями требования к отклонению от плоскостности бруска в зависимости от заданных размеров и степени точности на погрешность формы.

Варианты 1–10 для задания № 2 приведены в таблице 2.3 и рисунке 2.14.

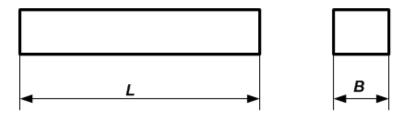


Рисунок 2.14 – Эскиз детали для вариантов 1–10 задания № 2

Таблица 2.3 – Варианты 1–10 для задания № 2

Вариант	1	2	3	4	5	6	7	8	9	10
Номинальный размер L, мм	100	22	125	110	80	50	360	450	630	500
Номинальный размер В, мм	40	10	25	16	10	18	50	75	60	63
Степень точности	2	4	3	5	4	10	7	5	6	7

Вариант 11–20. Нанести на эскизе условными обозначениями требования к отклонению от образующей цилиндра в зависимости от заданной длины и степени точности на погрешность формы.

Варианты 11–20 для задания № 2 приведены в таблице 2.4 и рисунке 2.15.

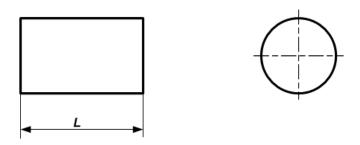


Рисунок 2.15 – Эскиз детали для вариантов 11–20 задания № 2

Таблица 2.4 – Варианты 11–20 для задания № 2

Вариант	11	12	13	14	15	16	17	18	19	20
Номинальная длина, мм	310	95	95	140	140	70	70	120	120	20
Степень точности	6	3	4	8	7	6	3	3	5	5

Вариант 21–30. Нанести на эскизе условными обозначениями требования к отклонению от круглости наружного цилиндра d и внутреннего D в зависимости от заданных диаметров и степеней точности на погрешность формы.

Варианты 21–30 для задания № 2 приведены в таблице 2.5 и рисунке 2.16.

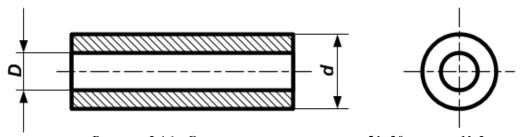


Рисунок 2.16 – Эскиз детали для вариантов 21–30 задания № 2

Таблица 2.5 – Варианты 21–30 для задания № 2

Вариант	21	22	23	24	25	26	27	28	29	30
Номинальный диаметр D,мм	40	75	92	44	55	75	180	200	29	32
Номинальный диаметр d, мм	21	50	45	12	24	40	50	80	12	10
Степень точности	6	4	5	5	8	7	6	8	9	4

Вариант 31–40. Нанести на эскизе условными обозначениями требования к отклонению от перпендикулярности поверхности Б относительности основания А в зависимости от размера h и степени точности на отклонение расположения поверхностей.

Варианты 31–40 для задания № 2 приведены в таблице 2.6 и рисунке 2.17.

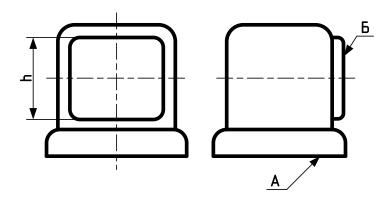


Рисунок 2.17 – Эскиз детали для вариантов 31–40 задания № 2

Таблица 2.6 – Варианты 31–40 для задания № 2

Вариант	31	32	33	34	35	36	37	38	39	40
Номинальный размер h,мм	40	40	100	100	160	160	250	250	60	80
Степень точности	2	4	5	7	9	1	4	8	3	4

Вариант 41–50. Нанести на эскизе условными обозначениями требования к отклонению от параллельности плоскостей бруска в зависимости от заданных размеров и степени точности на отклонение расположения поверхностей.

Варианты 41–50 для задания № 2 приведены в таблице 2.7 и рисунке 2.18.

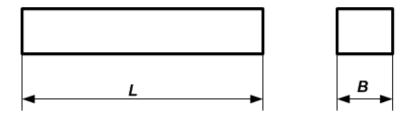


Рисунок 2.18 – Эскиз детали для вариантов 41–50 задания № 2

Таблица 2.7 – Варианты 41–50 для задания № 2

Вариант	41	42	43	44	45	46	47	48	49	50
Номинальный размер L, мм	400	400	90	90	160	40	90	30	40	160
Номинальный размер В, мм	90	90	30	30	40	25	10	10	20	25
Степень точности	8	7	3	5	8	4	3	3	5	8

Вариант 51–60. Нанести на эскизе условными обозначениями требования к отклонению от соосности отверстия А относительно отверстия Б в зависимости от заданных диаметров и степеней точности на отклонение расположения поверхностей.

Варианты 51–60 для задания № 2 приведены в таблице 2.8 и рисунке 2.19.

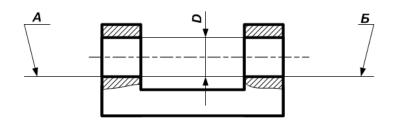


Рисунок 2.19 – Эскиз детали для вариантов 51–60 задания № 2

Таблица 2.8 – Варианты 51–60 для задания № 2

Вариант	51	52	53	54	55	56	57	58	59	60
Номинальный диаметр D, мм	40	25	16	160	160	100	100	320	320	25
Степень точности	2	1	3	5	4	7	8	6	4	3

Вариант 61–70. Нанести на эскизе условными обозначениями требования к радиальному биению поверхностей А и Б и торцовому биению поверхности В относительно оси отверстия в зависимости от заданных диаметров и степеней точности на отклонение расположения поверхностей.

Варианты 61–70 для задания № 2 приведены в таблице 2.9 и рисунке 2.20.

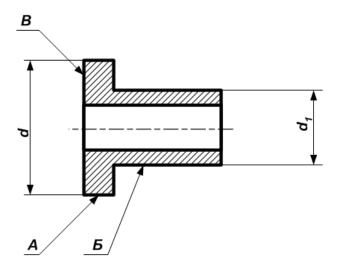


Рисунок 2.20 – Эскиз детали для вариантов 61–70 задания № 2

Таблица 2.9 – Варианты 61–70 для задания № 2

Вариант	61	62	63	64	65	66	67	68	69	70
Номинальный размер d, мм	200	110	40	85	60	145	28	69	124	90
Номинальный размер d ₁ , мм	125	65	12	20	35	80	20	20	36	50
Степень точности	6	7	8	7	4	3	5	2	5	8

Вариант 71–75. Нанести на эскизе условными обозначениями требования к отклонению от симметричности расположения паза h относительно поверхностей A в зависимости от размера паза и степени точности на отклонения расположения поверхностей.

Варианты 71–75 для задания № 2 приведены в таблице 2.10 и рисунке 2.21.

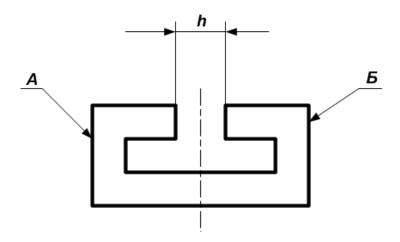


Рисунок 2.21 – Эскиз детали для вариантов 71–75 задания № 2

Таблица 2.10 – Варианты 71–75 для задания № 2

Вариант	71	72	73	74	75
Номинальный размер h, мм	90	110	110	230	230
Степень точности	5	7	2	1	1

Задание № 3

В задании 3 необходимо рассчитать отклонения по формулам (2.1) – (2.4), используя рисунки 2.7 – 2.10 и рисунки заданий.

Вариант 1–19. Микрометром измерены диаметры валов по краям и в середине, по результатам определить величину и вид отклонения профиля продольного сечения (конусообразность, седлообразность, бочкообразность).

Варианты 1–19 для задания № 3 приведены в таблице 2.11.

Таблица 2.11 – Варианты 1–19 для задания № 3

Вариант	$d_{1,MM}$	$d_{2,MM}$	d_{3} , MM	Вариант	$d_{1,MM}$	d _{2,} мм	d _{3,} мм
1	79,97	79,99	79,95	11	48,25	48,18	48,16
2	31,99	31,92	31,98	12	61,95	61,82	61,94
3	65,98	66,02	65,97	13	18,22	18,25	18,22
4	25,01	25,04	25,07	14	54,54	54,68	54,71
5	32,05	32,1	32,15	15	115,14	115	115,12
6	14,01	13,93	13,98	16	96,65	96,45	96,21
7	69,99	70,03	69,97	17	87,58	87,46	87,62
8	46,02	45,98	45,96	18	41,21	41,21	41,35
9	15,01	14,95	14,99	19	58,38	58,25	58,18
10	22,06	21,92	22,01				

Вариант 20–39. При измерении рычажной скобой валов установлено, что они имеют овальность. Определить значения овальности по результатам измерения.

Варианты 20–39 для задания № 3 приведены в таблице 2.12 и рисунке 2.22.

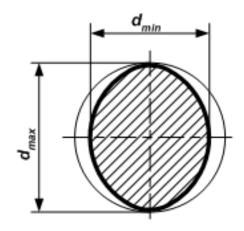


Рисунок 2.22 – Эскиз для вариантов 20–39 задания № 3

Таблица 2.12 – Варианты 20–39 для задания № 3

Вариант	d _{max} , мм	d _{min,} mm	Вариант	d _{max,} mm	d _{min,} mm
20	10,95	10,9	30	8,87	8,36
21	4,2	4,19	31	95,25	95,47
22	7,86	7,82	32	54,32	54,64
23	47,3	47,22	33	38,12	38,18
24	35,01	34,97	34	22,58	22,46
25	17,5	17,42	35	74,76	74,78
26	43,6	43,51	36	49,37	49,41
27	15,85	15,8	37	87,95	87,92
28	39,99	39,93	38	14,14	14,24
29	25	24,94	39	112,25	112,68

Вариант 40–57. Определить годность валов по результатам измерения огранки в призме.

Варианты 40–57 для задания № 3 приведены в таблице 2.13 и рисунке 2.23.

Рисунок 2.13 – Эскиз для вариантов 40–57 задания № 3

Таблица 2.23 – Варианты 40–57 для задания № 3

Вариант	Допустимая величина огранки, мм	Число граней п	Угол α призмы, град.	Показание отсчетного устройства, мкм
40	0,03	5	120	86
41	0,013	3	120	70
42	0,06	5	60	50
43	0,02	7	90	40
44	0,03	7	120	70
45	0,016	3	60	50
46	0,016	5	90	23
47	0,02	5	120	120
48	0,012	7	60	32
49	0,05	7	60	68
50	0,02	3	90	45
51	0,03	5	120	22
52	0,018	3	120	72
53	0,02	5	60	52
54	0,06	3	60	112
55	0,03	5	90	34
56	0,014	5	120	28
57	0,05	7	60	16

Вариант 58–75. Определить наибольшее и наименьшее возможное расстояние между осями отверстий при нормировании зависимого допуска в диаметральном выражении. Сделать вывод о возможности установки крепежной детали при условии сопряжения с деталью, у которой аналогичные размеры и допуски на отверстия.

Варианты 58–75 для задания № 3 приведены в таблице 2.14 и рисунке 2.24.

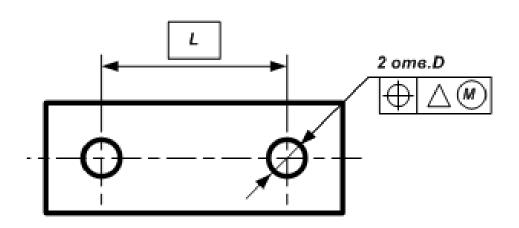


Рисунок 2.14 – Эскиз детали для вариантов 58–75 задания № 3

Таблица 2.24 – Варианты 58–75 для задания № 3

Вариант	D, мм	L, мм	Δ , mm
58	6,3 + 0,2	25	± 0,3
59	$4,2^{+0,1}$	68	± 0,1
60	6,4 + 0,2	75	$ \begin{array}{c} \pm 0.3 \\ \pm 0.1 \\ \pm 0.2 \\ \pm 0.2 \\ \pm 0.1 \\ \pm 0.3 \end{array} $
61	$5,2^{+0,2}$	64	± 0,2
62	8,3 + 0,3	80	± 0,1
63	5,2 + 0,1	52	± 0,3
64	8,3 + 0,2	35	± 0,2 ± 0,2
65	$6,2^{+0,2}$	70	± 0,2
66	$4,2^{+0,2}$	75	± 0,2
67	5,1 ^{+ 0,2}	94	± 0.2
68	9,3 + 0,2	31	± 0,3
69	8,2 + 0,1	68	± 0,2
70	6,3 + 0,2	125	$ \begin{array}{r} \pm 0.3 \\ \pm 0.2 \\ \pm 0.2 \\ \pm 0.2 \\ \pm 0.1 \\ \end{array} $
71	$9,2^{+0,2}$	75	± 0,2
72	$3,2^{+0,2}$	18	± 0,1
73	$\begin{array}{c} 6,3 & ^{+0,2} \\ 4,2 & ^{+0,1} \\ 6,4 & ^{+0,2} \\ 5,2 & ^{+0,2} \\ 8,3 & ^{+0,3} \\ 5,2 & ^{+0,1} \\ 8,3 & ^{+0,2} \\ 6,2 & ^{+0,2} \\ 4,2 & ^{+0,2} \\ \hline 2,3 & ^{+0,2} \\ 9,3 & ^{+0,2} \\ 8,2 & ^{+0,1} \\ 6,3 & ^{+0,2} \\ 9,2 & ^{+0,2} \\ 3,2 & ^{+0,2} \\ \hline 2,4 & ^{+0,2} \\ 7,2 & ^{+0,2} \\ 9,3 & ^{+0,3} \\ \end{array}$	44	± 0,3 ± 0,2
74	7,2 + 0,2	87	± 0,2
75	9,3 + 0,3	22	± 0,2

Задание № 4

Изношенную инструментальную линейку проверили на прямолинейность (рисунок 2.15). По результатам измерений построить график и указать максимальную величину отклонения от прямолинейности линейки (измерение проводилось в точках, расположенных через равные интервалы).

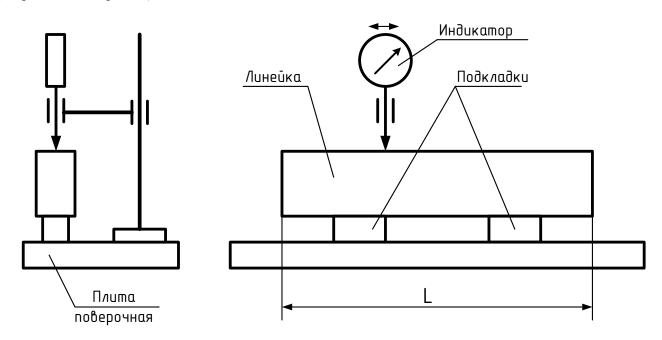


Рисунок 2.15 – Эскиз для задания № 4

Пример решения задания № 4.

Исходные данные:

Длина линейки L = 150 мм.

Измерение в первой точке $\Delta_1 = +5$ мкм.

Измерение во второй точке $\Delta_2 = -4$ мкм.

Измерение в третьей точке $\Delta_3 = -2$ мкм.

Измерение в четвертой точке $\Delta_4 = +1$ мкм.

Решение.

Построим график (рисунок 2.16) и укажем на нем максимальную величину отклонения от прямолинейности δ_{max} .

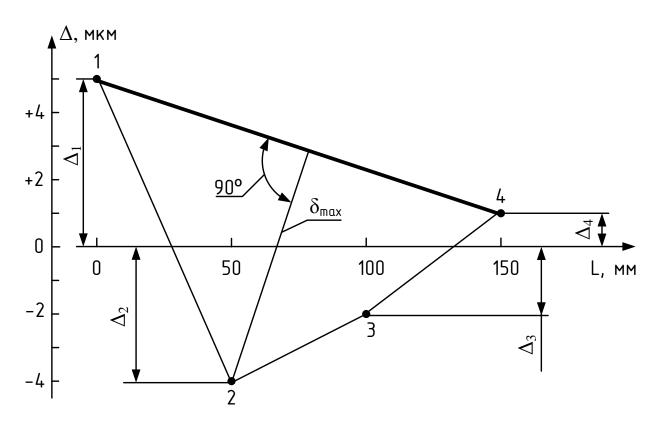


Рисунок 2.16 – Эскиз решения примера задания № 4

Варианты для задания № 4 приведены в таблице 2.25.

Таблица 2.25 – Варианты для задания № 4

Вариант	$\Delta_{1,}$ мкм	$\Delta_{2,}$ MKM	$\Delta_{3,}$ MKM	$\Delta_{4,}$ MKM	Δ_5 , MKM	$\Delta_{6, \text{ MKM}}$	$\Delta_{7,}$ MKM	L, mm
1	+10	+7	+5	+10	+20	+27	+30	800
2	0	0	+7	-13	-10	-15	-20	1000
3	0	+4	+8	+10	+7	+8	+10	1500
4	0	+7	+15	+20	+16	+10	+2	1000
5	0	+3	-4	+6	-5	+5	-3	1200
6	-10	+7	+6	-12	-21	-25	-30	600
7	-20	+5	-18	-15	-32	-30	-40	900

Продолжение таблицы 2.25

Вариант	$\Delta_{1,}$ MKM	$\Delta_{2,}$ MKM	$\Delta_{3,}$ MKM	$\Delta_{4,}$ мкм	Δ_5 , MKM	$\Delta_{6, m MKM}$	$\Delta_{7,}$ MKM	L, mm
8	0	+6	-10	-12	-8	+7	+11	1500
9	0	+5	+12	+13	+10	+5	+9	800
10	+20	+8	+17	+14	+30	+28	+35	1000
11	+10	+5	+7	+10	+2	+10	+16	1000
12	0	-3	+5	-5	-9	-5	-7	1500
13	+10	+16	+20	+15	+10	+8	+7	1000
14	-25	-30	-21	-12	+6	+7	+10	800
15	-30	-28	-17	-8	+6	+13	+13	1000
16	+30	+21	+18	+4	+12	+3	0	1500
17	+7	+18	+9	+14	+20	+21	+20	1500
18	+12	+7	+6	+1	-4 21	+2	+4	1200
19	+3	-1	-15	-14	-21	-17	-15	600
20	0 -5	+4	+8	+16	+18	+16	+16	900
21 22	-5 -20	-2 -17	0 -10	-2 +3	-3 -4	-10 -4	-9 0	1000 800
23	-20 -15	-17 -10	-10 -20	+3 -10	-4 -5	-4 -1	<u> </u>	1000
24	0	0	+4	+6	0	+8	+4	1500
25	-30	-25	-15	-20	-17	-10	-5	1000
26	+4	+17	+25	+18	+25	+15	+20	900
27	+14	+10	+4	+2	0	-1	-4	1200
28	+15	+25	+20	+20	+20	+15	+14	600
29	+7	+15	0	0	+3	0	-2	900
30	+2	+10	+16	+20	+15	+7	0	1500
31	+20	+27	+30	+10	+10	+7	+5	600
32	+2	0	+7	+15	+20	+16	+10	1000
33	-21	-25	-30	0	+3	-4	+6	1200
34	-32	-10	+7	+6	-12	-30	-40	600
35	+7	+8	0	+4	+8	+10	+10	900
36	-3	0	0	+7	-13	-5	+5	1500
37	0	-3	+5	-5	-10	-15	-20	800
38	-9	-5	-20	+5	-18	-15	-32	1000
39	-8	0	+6	-10	-12	-8	-9	1000
40	+10	+20	+8	+17	+14	+30	+35	1500
41	+5	+9	+10	+5	+7	+10	+2	600
42	0	+5	+12	+13	+10	+7	+11	900
43	-30	-32	-30 -28	-40 +16	-21 +20	-12	<u>−7</u>	1000
44	+16	+30	+28	+16	+20	+2	+10	800
45 46	+15 -9	+10 -25	+10 -30	+10 -28	+8 -17	+7 -8	+6 -5	1000 1500
47	+3	+7	-30 +6	-28 +13	+13	-8 +8	+16	1000
48	+3 -7	-10	+3	+13 -5	+13 -2	0	+10 -2	900
49	+30	+21	+3	+4	+12	+7	+6	1200
50	-1	-15	-14	-3	-10	-20	-17	1500
51	+20	+21	+20	+12	+3	0	1/	800
52	+20	+7	+18	+9	+14	0	+4	1000
53	+18	+16	+16	+4	+17	+25	+18	1000
55	+18	+10	+16	+4	+1/	+25	+18	1000

Продолжение таблицы 2.25

Вариант	$\Delta_{1,}$ мкм	$\Delta_{2,}$ MKM	$\Delta_{3, MKM}$	$\Delta_{4,}$ MKM	Δ_5 , MKM	$\Delta_{6,}$ мкм	$\Delta_{7,}$ мкм	L, мм
54	-21	-17	-15	-30	-25	-15	-20	1500
55	-4	+2	+4	-9	-4	-4	0	1000
56	0	0	+4	+6	+14	+10	+4	+2
57	-17	-10	-15	-10	-20	-10	-5	1000
58	+15	+20	+15	+25	+20	+20	+25	1200
59	+8	+4	-5	-1	-4	0	0	600
60	-3	0	0	-1	-4	+7	-13	900
61	0	+7	+20	+15	+14	+15	+20	1500
62	0	+7	+8	0	+4	+8	+2	800
63	+7	+6	-3	+5	-5	-10	-12	1000
64	-2	-10	-21	-25	-30	0	+3	1000
65	0	+3	-21	-25	-30	-4	+6	1500
66	+15	+20	+20	+27	+30	+10	+10	1000
67	+6	-12	-32	-10	+7	-40	-30	900
68	+7	+10	+10	+4	+8	+8	0	1200
69	+7	-13	-3	0	0	-5	+5	600
70	0	+2	+16	+7	+10	+7	+5	900
71	+10	+10	+27	+10	+10	+20	+30	1500
72	-10	+7	+2	0	+7	+6	+6	1500
73	+8	0	+3	-4	+8	0	+4	1000
74	-30	-40	-12	-21	-25	-30	-32	1200
75	+7	+5	+15	+20	+16	+10	+7	600

3 РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА № 3 «ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ»

В процессе формообразования деталей на их поверхности появляется шероховатость – ряд чередующихся выступов и впадин сравнительно малых размеров.

Шероховатость может быть следом от резца или другого режущего инструмента, копией неровностей форм или штампов, может возникать вследствие вибраций, возникающих при резании, а также в результате действия других факторов.

Влияние шероховатости на работу деталей машин многообразно:

- шероховатость поверхности может нарушать характер сопряжения деталей за счет смятия или интенсивного износа выступов профиля;
- в стыковых соединениях из-за значительной шероховатости снижается жесткость стыков;
- шероховатость поверхности валов разрушает контактирующие с ними различного рода уплотнения;
- неровности, являясь концентраторами напряжений, снижают усталостную прочность деталей;
- шероховатость влияет на герметичность соединений, на качество гальванических и лакокрасочных покрытий;
 - шероховатость влияет на точность измерения деталей;
- коррозия металла возникает и распространяется быстрее на грубо обработанных поверхностях и т.п.

3.1 Основные понятия и обозначения

Шероховатость поверхности оценивается по неровностям профиля (рисунок 3.1), получаемого путем сечения реальной поверхности плоскостью. Для отделения шероховатости поверхности от других неровностей с относительно большими шагами ее рассматривают в пределах базовой длины.

Базой для отсчета отклонений профиля является **средняя линия профиля** m-m-1 линия, имеющая форму номинального профиля и проведенная так, что в пределах базовой длины среднее квадратичное отклонение профиля до этой линии минимально.

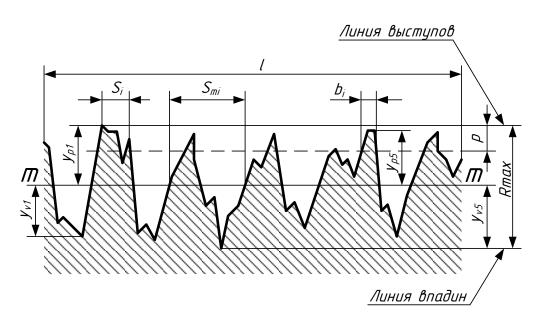


Рисунок 3.1 – Неровности профиля и параметры шероховатости поверхности

Для количественной оценки и нормирования шероховатости поверхности ГОСТ 2789 устанавливает следующие шесть параметров шероховатости, из которых первые три характеризуют высоту неровностей (вертикальные параметры), а три последние – шаговые размеры неровностей (горизонтальные параметры):

1 **Среднее арифметическое отклонение профиля** *Ra* — это среднее арифметическое из абсолютных значений отклонений профиля в пределах базовой длины:

$$Ra = \frac{1}{l} \int_{0}^{l} |y(x)| dx,$$
 (3.1)

где l — базовая длина;

y – отклонение профиля (расстояние между любой точкой профиля и базовой линией m – m).

При дискретном способе обработки профилограммы параметр Ra рассчитывают по формуле:

$$Ra = \frac{1}{n} \sum_{i=1}^{n} \left| y_i \right|, \tag{3.2}$$

где y_i – измеренные отклонения профиля в дискретных точках;

n – число измеренных дискретных отклонений на базовой длине.

Ra нормируется в пределах от 0,008 до 100 мкм.

2 Высота неровностей профиля по десяти точкам Rz — сумма средних абсолютных значений высот пяти наибольших выступов профиля и глубин пяти наибольших впадин профиля в пределах базовой длины:

$$Rz = \frac{\sum_{i=1}^{5} |y_{pi}| + \sum_{i=1}^{5} |y_{vi}|}{5},$$
 (3.3)

где y_{pi} – высота і–го наибольшего выступа профиля;

 y_{vi} – глубина і-й наибольшей впадины профиля.

Rz нормируется в пределах от 0,025 до 1000 мкм.

- 3 **Наибольшая высота неровностей профиля** *Rmax* расстояние между линией выступов профиля и линией впадин профиля в пределах базовой длины (рисунок 3.1). *Rmax* нормируется в пределах от 0,025 до 1000 мкм.
- 4 **Средний шаг неровностей профиля** S_m среднее значение шага неровностей в пределах базовой длины:

$$S_m = \frac{1}{n} \sum_{i=1}^n S_{mi}, \tag{3.4}$$

где S_{mi} — шаг неровностей профиля — отрезок средней линии, заключенный между точками пересечения смежных выступа и впадины со средней линией.

Другими словами, под средним шагом неровностей понимается среднее арифметическое значение длин отрезков средней линии, пересекающих профиль в трех соседних точках и ограниченных двумя крайними точками.

Значение S_m нормируется в пределах от 0,002 до 12,5 мм.

5 Средний шаг местных выступов профиля S — среднее значение шага местных выступов профиля в пределах базовой длины:

$$S = \frac{1}{n} \sum_{i=1}^{n} S_i, \tag{3.5}$$

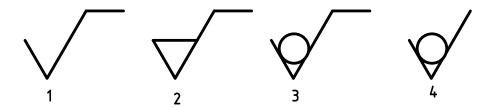
где S_i — шаг местных выступов профиля — длина отрезка средней линии, заключенного между проекциями на нее наивысших точек двух соседних местных выступов профиля.

То есть, под этим параметром понимается среднее арифметическое значение длины отрезков средней линии между проекциями на нее двух наивысших точек соседних выступов профиля.

Значение S нормируется в пределах от 0,002 до 12,5 мм.

6 **Относительная опорная длина профиля** t_p — отношение суммы длин отрезков b_i , отсекаемых в пределах базовой длины в материале детали линией, эквидистантной средней линии и расположенной на заданном расстоянии от линии выступов профиля (уровень сечения p), к базовой длине:

$$t_p = \frac{1}{l} \sum_{i=1}^{n} b_i. {3.6}$$


Значение p — уровень сечения профиля обычно выражают в процентах от Rmax величинами от 5 до 90 %. Значение t_p нормируется в пределах от 10 до 90 %.

Кроме перечисленных шести количественных параметров шероховатости, стандартом установлены два качественных параметра:

- а) вид обработки. Указывается в том случае, когда шероховатость поверхности следует получить только определенным способом;
- б) тип направлений неровностей: параллельное, перпендикулярное, перекрещивающееся, произвольное, кругообразное, радиальное, точечное. Тип направлений неровностей указывается только в ответственных случаях, когда это необходимо по условиям работы детали или сопряжения.

Выбор параметров шероховатости поверхности производится в соответствии с ее функциональным назначением. Основным во всех случаях является нормирование высотных параметров. Предпочтительно, в том числе и для самых грубых поверхностей, нормировать параметр Ra, который точно отражает отклонения профиля, поскольку определяется по значительно большему числу точек, чем Rz. Параметр Rz нормируется в тех случаях, когда прямой контроль с помощью профилометров невозможен или затруднен (режущие кромки инструментов и т. п.). Следует применять в первую очередь предпочтительные значения.

Знаки шероховатости, указываемые на чертежах, показаны на рисунке 3.2:

1 — способ обработки поверхности не устанавливается; 2 — поверхность должна быть образована удалением слоя материала; 3 — поверхность должна быть образована без удаления слоя материала; 4 — поверхность не обрабатывается по данному чертежу

Рисунок 3.2 – Знаки обозначения шероховатости поверхности

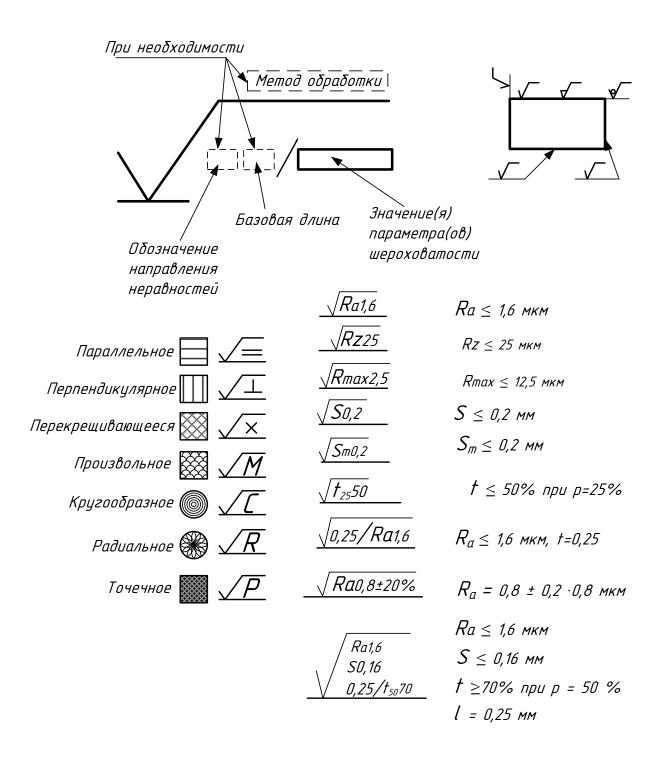


Рисунок 3.3 – Структура и примеры обозначения шероховатости

При указании одинаковой шероховатости для части поверхностей изделия в правом верхнем углу чертежа помещают обозначение одинаковой шероховатости и знак шероховатости в скобках. Знак в скобках означает, что все поверхности, на которых на изображении не нанесены обозначения шероховатости, должны иметь шероховатость, указанную перед скобками (рисунок 3.4).

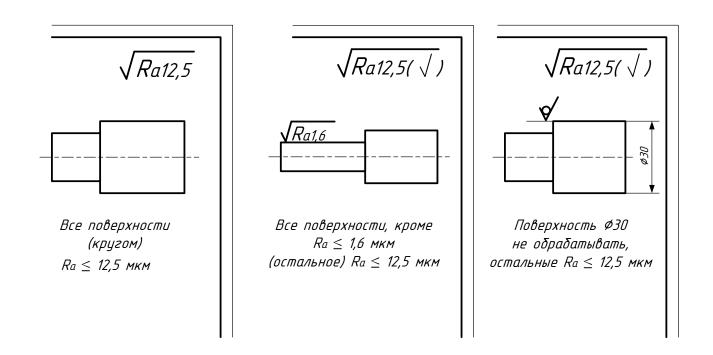


Рисунок 3.4 — Варианты обозначения шероховатости для части поверхностей изделия на чертеже

3.2 Контрольные задания расчетно-графической работы № 3

Цель заданий — научиться назначать параметры шероховатости для различных способов обработки, обозначать их на чертежах, рассчитывать их по результатам опытных данных.

Задание № 1

Определить значение параметра шероховатости Rz по приведенным результатам обработки профилограммы поверхности. Коэффициент вертикального увеличения $V_B = 2000$, коэффициент горизонтального увеличения $V_\Gamma = 60$.

Пример решения задания № 1.

Исходные данные: рисунок 3.5.

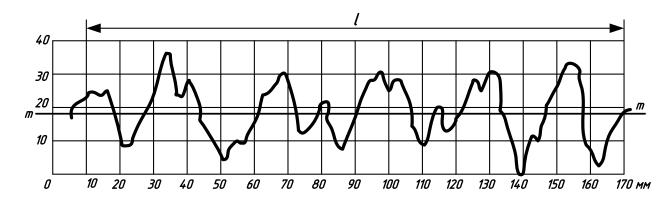


Рисунок 3.5 – Эскиз к примеру задания № 1

Решение.

На эскизе уже обозначены средняя линия m-m и базовая длина l. Найдем значения высот пяти наибольших выступов профиля и глубин пяти наибольших впадин профиля в пределах базовой длины (рисунок 3.6).

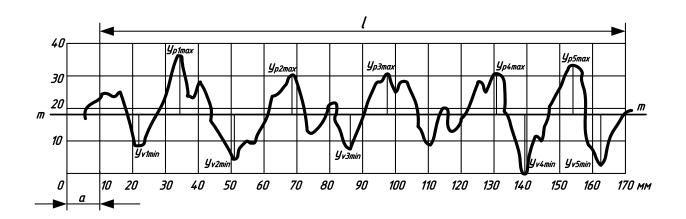


Рисунок 3.6 – Эскиз решения примера задания № 1

Результаты замеров на рисунке необходимо скорректировать согласно масштабу эскиза.

Коэффициент корреляции

$$K = \frac{10}{a},\tag{3.7}$$

где a - peзультат фактического замера расстояния на эскизе (рисунок 3.6), <math>a = 8 мм.

$$K = \frac{10}{8} = 1,25.$$

Расчетные размеры высот и глубин определяются по формулам

$$y_{p} = \frac{y_{p}'}{Y_{R}} K, \qquad (3.8)$$

$$y_{v} = \frac{y_{v}'}{y_{p}} K, \qquad (3.9)$$

где ур – размер высоты выступа профиля;

у_v – размер глубины впадины профиля;

 y_p' – размер высоты выступа профиля, замеренный на эскизе;

 y_{v}' – размер глубины впадины профиля, замеренный на эскизе;

 y_B – коэффициент вертикального увеличения, y_B = 2000.

Данные замеров и расчетов показаны в таблице 3.1.

Таблица 3.1 – Данные замеров и расчетов к решению задания № 1

Наименование	1	2	3	4	5
Размер высоты выступа профиля, замеренный на эскизе $\mathbf{y}_{\mathbf{p}}'$, мм	16	10	11	11	13
Размер глубины впадины профиля, замеренный на эскизе \mathbf{y}_{v}' , мм	8	12	9	16	13
Размер высоты выступа профиля ур, мкм	10	6,3	6,9	6,9	8,1
Размер глубины впадины профиля у, мкм	5	7,5	5,6	10	8,1

Высота неровностей профиля по десяти точкам Rz определяется по формуле (3.3)

$$Rz = \frac{(10+6,3+6,9+6,9+8,1)+(5+7,5+5,6+10+8,1)}{5} = 13,5 \text{ MKM}.$$

По таблице A6 выбираем рекомендуемое стандартное значение (меньшее или равное расчетному) Rz = 12,5 мкм.

Варианты для задания № 1 приведены на рисунках 3.7–3.21.

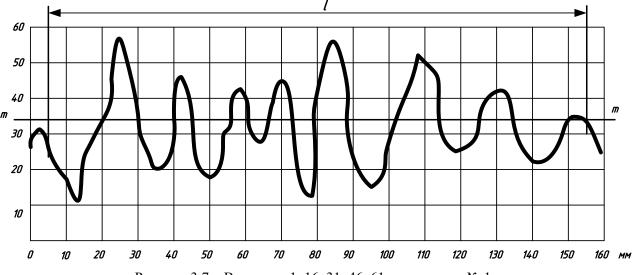


Рисунок 3.7 – Варианты 1, 16, 31, 46, 61 для задания № 1

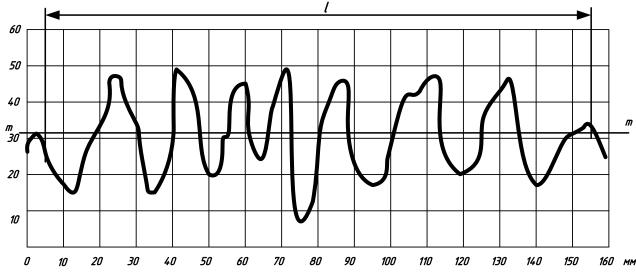


Рисунок 3.8 – Варианты 2, 17, 32, 47, 62 для задания № 1

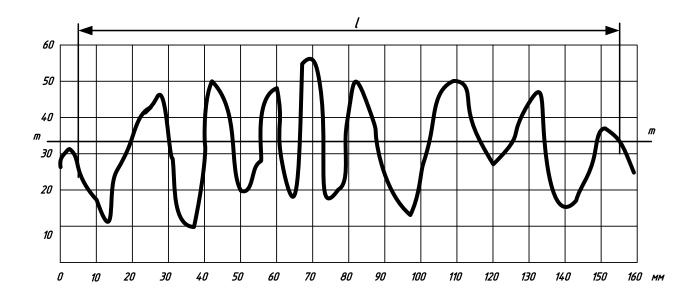


Рисунок 3.9 – Варианты 3, 18, 33, 48, 63 для задания № 1

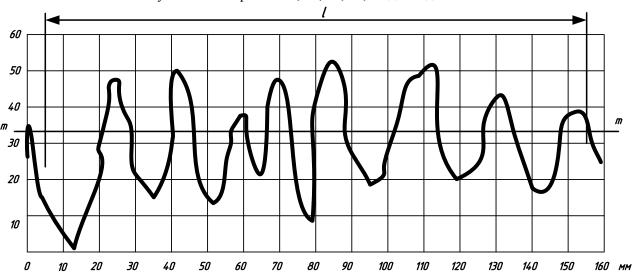


Рисунок 3.10 – Варианты 4, 19, 34, 49, 64 для задания № 1

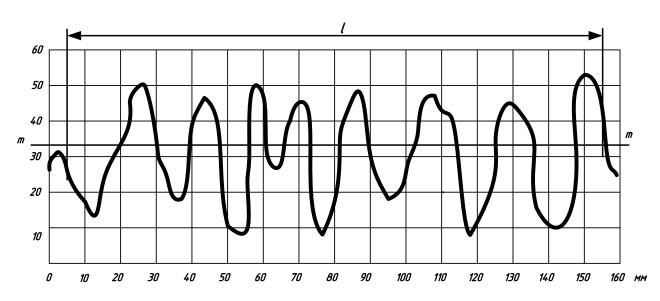


Рисунок 3.11 – Варианты 5, 20, 35, 50, 65 для задания № 1

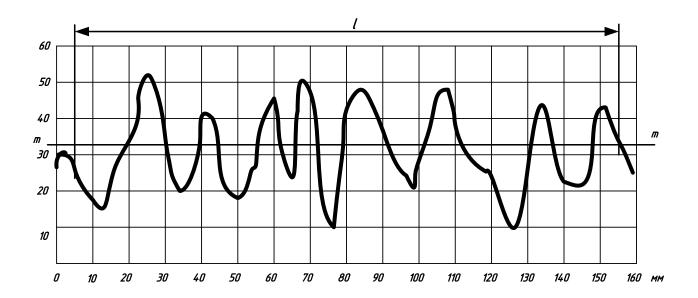


Рисунок 3.12 – Варианты 6, 21, 36, 51, 66 для задания № 1

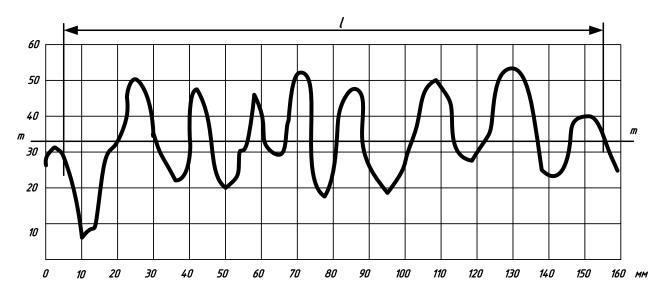


Рисунок 3.13 — Варианты 7, 22, 37, 52, 67 для задания № 1

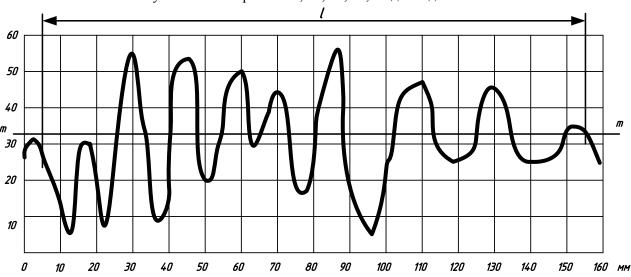


Рисунок 3.14 — Варианты 8, 23, 38, 53, 68 для задания № 1

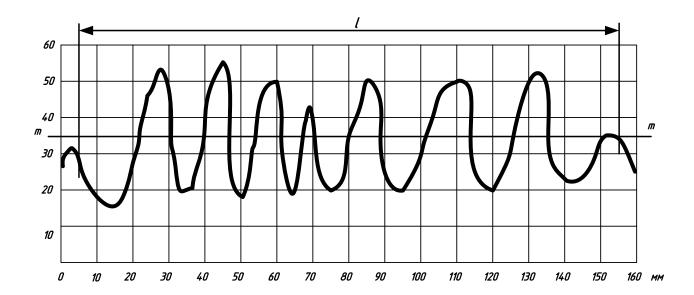


Рисунок 3.15 — Варианты 9, 24, 39, 54, 69 для задания № 1

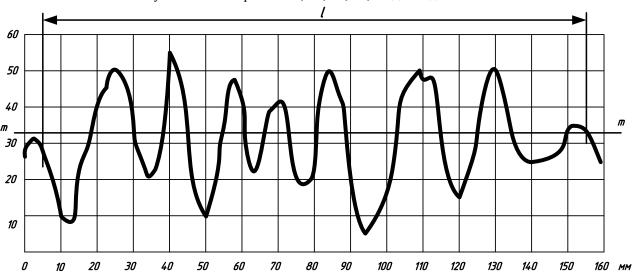


Рисунок 3.16 – Варианты 10, 25, 40, 55, 70 для задания № 1

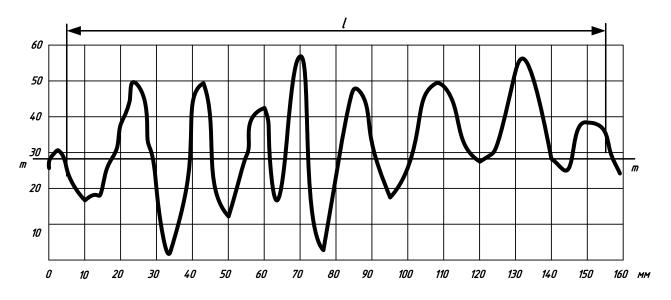


Рисунок 3.17 – Варианты 11, 26, 41, 56, 71 для задания № 1

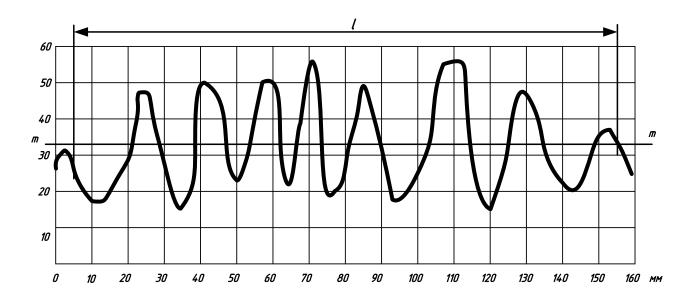


Рисунок 3.18 – Варианты 12, 27, 42, 57, 72 для задания № 1

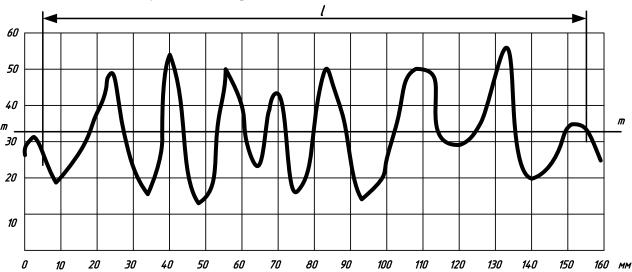


Рисунок 3.19 — Варианты 13, 28, 43, 58, 73 для задания № 1

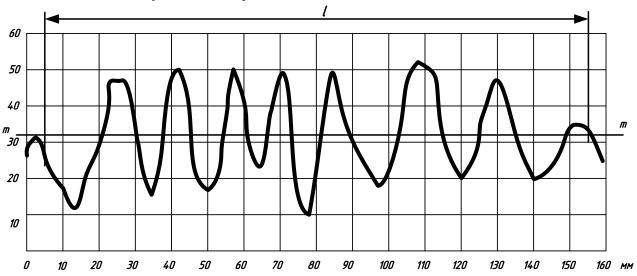
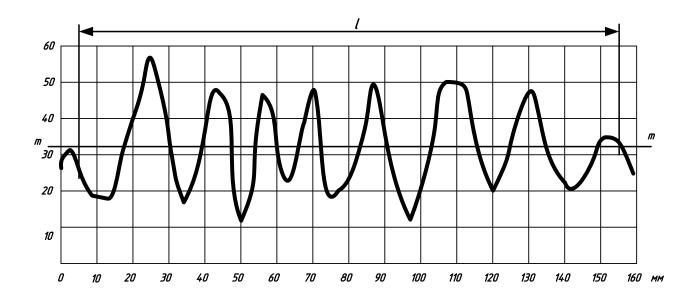
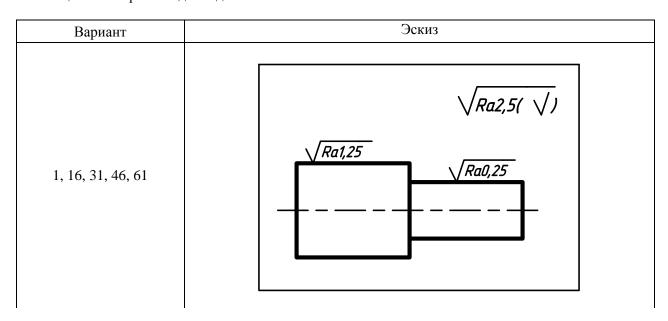
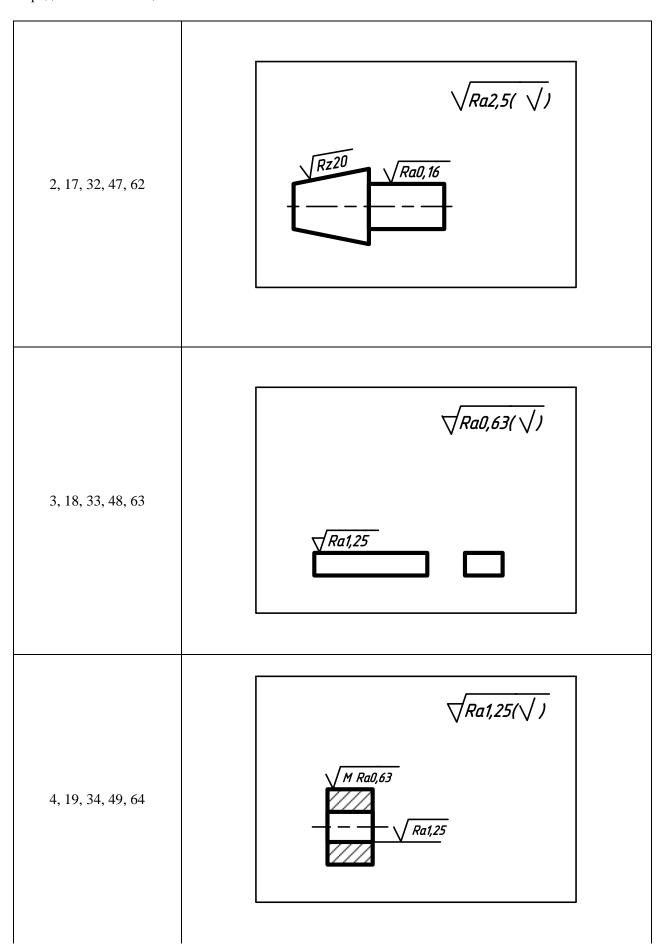


Рисунок 3.20 – Варианты 14, 29, 44, 59, 74 для задания № 1

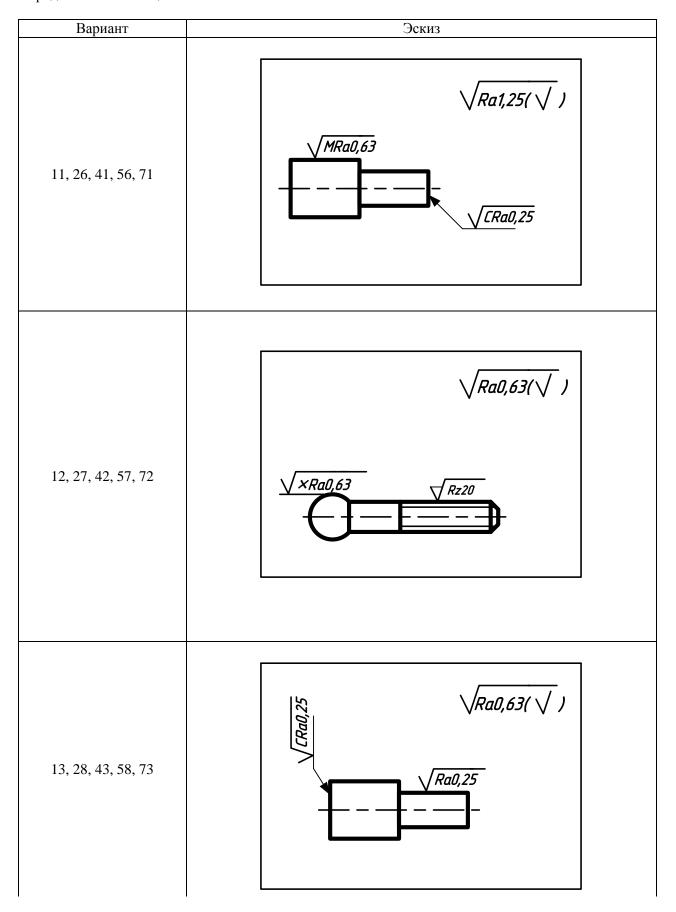




Рисунок 3.21 – Варианты 15, 30, 45, 60, 75 для задания № 1

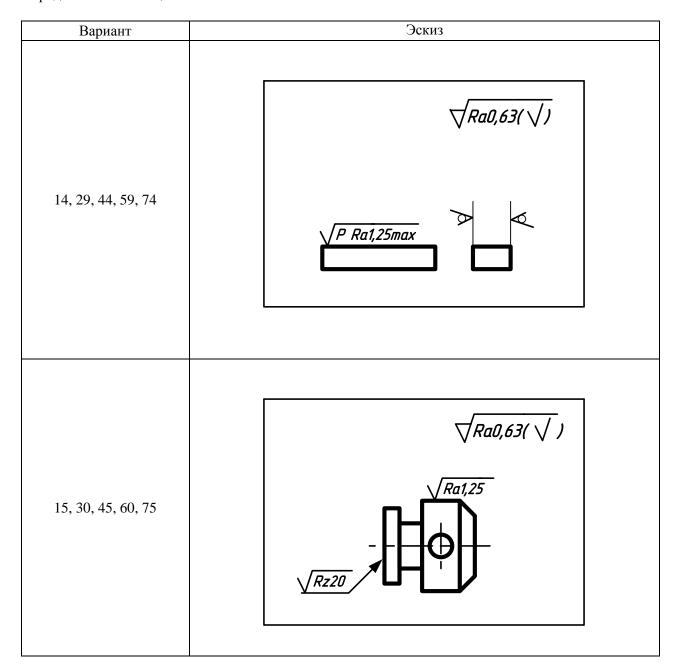
Задание № 2

Расшифровать обозначения шероховатости на чертеже. Варианты для задания № 2 приведены в таблице 3.2.

Таблица 3.2 – Варианты для задания № 2


Продолжение таблицы 3.2

Вариант	Эскиз
5, 20, 35, 50, 65	$\sqrt{Ra1,25}$
6, 21, 36, 51, 66	\sqrt{Rz} $\sqrt{Ra0,32}$ $\sqrt{Ra0,1}$
7, 22, 37, 52, 67	\(\sqrt{Ra2,5(\sqrt{\sq}}}}}}}}}}}}}} \end{\sqrt{\sin}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}


Продолжение таблицы 3.2

Вариант	Эскиз
8, 23, 38, 53, 68	$\sqrt{Rz80}(\sqrt{)}$
9, 24, 39, 54, 69	\(\int Rz40(\sqrt)\)
10, 25, 40, 55, 70	√Ra0,63(√)

Продолжение таблицы 3.2

Продолжение таблицы 3.2

4 РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА № 4 «ОПРЕДЕЛЕНИЕ ПРОИЗВОДСТВЕННОГО ДОПУСКА»

4.1 Основные положения

Для того, чтобы ни одна из бракованных деталей не была признана ошибочно годной, приемочные границы могут быть и сдвинуты внутрь поля допуска до значения технологического (производственного) допуска $T_{пр}$ (рисунок 4.1 а). Чтобы не сужать допуск и не увеличивать стоимости изделия, необходимо либо уменьшить погрешность $\delta_{uзм}$, либо сместить настройку (установить приемочные границы) вне поля допуска (рисунок 4.1б, в), расширяя его до гарантированного значения T_{Γ} .

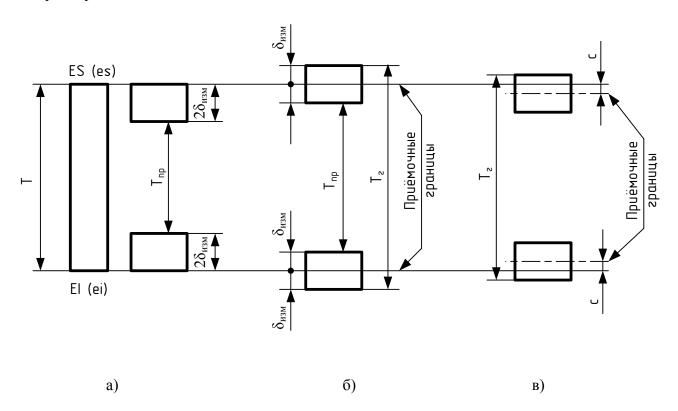


Рисунок 4.1 – Варианты расположения приемочных границ по отношению к полю допуска

При установлении приемочных границ, совпадающих с границами поля допуска (наиболее предпочтительный вариант как в отечественной, так и в зарубежной практике), из-за погрешности измерения $\delta_{uзм}$ в случае перепроверки части деталей из общего количества деталей, принятых как годные, окажется какой-то процент брака (m, %), а у части забракованных деталей – какой-то процент годных деталей (n, %). Имеет значение также параметр, характеризующий вероятностную предельную величину c выхода размеров за каждую границу поля допуска у неправильно принятых деталей. Число неправильно принятых m и неправильно забракованных n изделий, а также размер c выхода у первых определяют вероятностным расчетом, так как эти параметры зависят от закона распределения погрешностей изготовления и измерения.

Рассеяние размеров деталей, изготовленных на технологическом оборудовании, подчиняется одному из вероятностных законов распределения с погрешностью δ_{max} и со среднеквадратичным распределением σ_{max} .

Установлена связь между вероятностью m принятия бракованных деталей как годных, вероятностью n неправильной браковки годных деталей, вероятным предельным значением c выхода размера за каждую границу поля допуска у неправильно принятых бракованных деталей и относительной погрешностью измерения

$$A_{\text{Mem}}(\sigma) = \frac{\sigma_{\text{u}_{3M}}}{T},\tag{4.1}$$

где $\sigma_{u_{3M}}$ – среднеквадратическое отклонение погрешности измерения.

При определении параметров m, n и c (таблица 4.1) рекомендуется принимать для квалитетов IT2-IT7 $A_{mem}(\sigma)=0,16$ (16 %), для квалитетов IT8-IT9 $A_{mem}(\sigma)=0,12$ (12 %), для квалитетов IT10 и грубее $A_{mem}(\sigma)=0,1$ (10 %).

Таблица 4.1 – Предельные значения параметров разбраковки по ГОСТ 8.051

$A_{Mem}(\sigma)$, %	m, %	n, %	$\frac{c}{T}$	$A_{\text{Mem}}(\sigma)$, %	m, %	n, %	$\frac{c}{T}$
1,6	0,37-0,39	0,7-0,75	0,01	10,0	3,10-3,50	4,50-4,75	0,14
3	0,87-0,9	1,2–1,3	0,03	12,0	3,75–4,11	5,40-5,80	0,17
5	1,6–1,7	2,0-2,25	0,06	16,0	5,0-5,4	7,80–8,25	0,25
6	2,6–2,8	3,4–3,7	0,1				

Первые значения m и n соответствуют закону нормального распределения погрешностей измерения, вторые — закону равной вероятности.

При неизвестном законе распределения погрешности измерения значения m и n можно определить как среднее из приведенных значений. При введении производственного допуска величина смещения не должна превышать значения $\frac{\sigma_{u_{3M}}}{2}$ у каждой приемочной границы. Если точность технологического процесса неизвестна, производственный допуск назначается из условия (рисунок 4.16)

$$T_{np} = T - \delta_{u_{3M}}. \tag{4.2}$$

Когда известна точность технологического процесса, величину производственного допуска рекомендуется назначить из условия (рисунок 4.1в)

$$T_{np} = T - 2c. (4.3)$$

Когда точность технологического процесса неизвестна, предельные размеры детали уменьшаются на половину допускаемой погрешности измерения (рисунок 4.1б), тогда вал (или отверстие) будет иметь размеры:

$$d'_{max} = d_{max} - 1/2 \, \delta_{u_{3M}}, \tag{4.4}$$

$$D'_{max} = D_{max} - 1/2 \delta_{u_{3M}}, \tag{4.5}$$

$$d'_{min} = d_{min} + 1/2 \, \delta_{u_{3M}}, \tag{4.6}$$

$$D'_{min} = D_{min} + 1/2 \, \delta_{u_{3M}}. \tag{4.7}$$

Если точность технологического процесса известна, то предельные отклонения уменьшаются на величину c (рисунок 4.1в)

$$d''_{max} = d_{max} - c, (4.8)$$

$$D''_{max} = D_{max} - c, \tag{4.9}$$

$$d''_{min} = d_{min} + c, (4.10)$$

$$D''_{min} = D_{min} + c.$$
 (4.11)

4.2 Контрольное задание расчетно-графической работы № 4

Цель задания — научиться определять производственный допуск и предельные размеры при изготовлении с учетом известного закона распределения погрешностей размеров.

Пример решения задания.

Задание.

Определить производственный допуск и предельные размеры при изготовлении отверстия $Ø40H7(^{+0,025})$.

Решение.

При определении параметров m, n и c при неизвестном законе распределения погрешности измерения принимаем для квалитета IT7 $A_{\text{мет}}(\sigma)=0,16$ (16%). При этом: m=5,2 %, n=8 %, c=0,25 $T=0,25\cdot 0,025=0,00625$ мм (таблица 4.1). По таблице A7 погрешность измерений для квалитета IT7 $\delta_{\text{изм}}=\pm 0,007$ мм.

Среди годных деталей могли оказаться неправильно принятые детали (m = 5,2 %) с предельными размерами:

$$\begin{split} D_{max\;\delta p} &= D_{max} + 0.5\delta_{\text{изм}},\\ D_{max\;\delta p} &= 40.025 + 0.5 \cdot 0.007 = 40.0285\;\text{мм}.\\ D_{min\;\delta p} &= D_{min} \; - \; 0.5\delta_{\text{изм}}.\\ D_{min\;\delta p} &= 40 - \; 0.5 \cdot 0.007 = 39.9965\;\text{мм}. \end{split}$$

Среди забракованных деталей могли оказаться годные детали (n = 8 %) с размерами:

$$D_{\text{max rod}} = D_{\text{max}} - 0.5\delta_{\text{изм}}$$

$$\begin{split} D_{max\;rog} &= 40,025 - \; 0,5 \; \cdot \; 0,007 = 40,0215 \; \text{mm}. \\ \\ D_{min\;rog} &= D_{min} \; + 0,5\delta_{\text{\tiny M3M}}. \\ \\ D_{min\;rog} &= 40 + 0,5 \; \cdot \; 0,007 = 40,0035 \; \text{mm}. \end{split}$$

Так как точность технологического процесса неизвестна, производственный допуск назначается из условия (рисунок 4.2)

$$T_{np} = T - \delta_{\text{изм}}$$
.

$$T_{\text{mp}} = 25 - 7 = 18$$
 MKM.

Предельные размеры детали уменьшаются на половину допускаемой погрешности измерения, тогда отверстие будет иметь размеры:

$$\begin{aligned} D'_{max} &= D_{max} - 0.5\delta_{\text{изм}},\\ D'_{max} &= 40.025 - 0.5 \cdot 0.007 = 40.0215 \text{ MM},\\ D'_{min} &= D_{min} + 0.5\delta_{\text{изм}},\\ D'_{min} &= 40 + 0.5 \cdot 0.007 = 40.0035 \text{ MM}. \end{aligned}$$

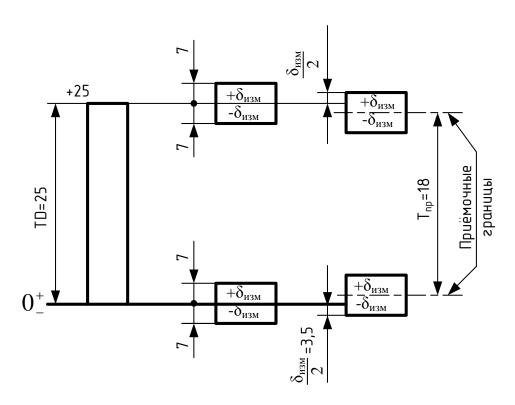


Рисунок 4.2 – Расположение приемочных границ по отношению к полю допуска отверстия

Варианты для задания приведены в таблице 4.2.

. Таблица 4.2 – Варианты для задания

Вариант	Размер	Вариант	Размер	Вариант	Размер	Вариант	Размер
1	125F8	20	144N7	39	110f7	58	66D9
2	52r6	21	75e7	40	105h6	59	46a11
3	195T7	22	36x8	41	125k6	60	155M6
4	23D10	23	2H14	42	100js6	61	18c8
5	87n7	24	40H9	43	85u8	62	98H8
6	49Js9	25	71M7	44	24h12	63	171f6
7	64d10	26	4K8	45	85H8	64	35u8
8	230s7	28	105M8	46	8P7	65	302E8
9	11H7	27	160h6	47	220R7	66	28k6
10	32s5	29	10Js8	48	180H7	67	58P6
11	202e7	30	50t6	49	80u8	68	45H6
12	89H8	31	250E8	50	110E8	69	38H7
13	18m5	32	25u7	51	100F9	70	84k7
14	82Js8	33	12h6	52	16n7	71	51n7
15	105u8	34	20n7	53	55M6	72	70s7
16	35F8	35	82x8	54	38r6	73	50U8
17	28d9	36	9R7	55	3D8	74	30F9
18	62h9	37	284m6	56	28K7	75	171js8
19	43t6	38	61g5	57	131h12		

5 РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА № 5 «ОПРЕДЕЛЕНИЕ НАСТРОЕЧНОЙ МЕРЫ ПРИ НАСТРОЙКЕ ИЗМЕРИТЕЛЬНОГО ИНСТРУМЕНТА»

5.1 Основные положения

Пригодность размеров деталей после их изготовления или ремонта устанавливают либо путем измерения, либо путем контроля. При измерении широко применяют универсальные средства измерения (УСИ), позволяющие установить с заданной точностью значения действительных размеров, которые затем сравнивают с установленными предельными размерами, и дают заключение о годности детали. При выборе УСИ учитывают совокупность метрологических (диапазон измерения, цена деления, измерительное усилие, точность, предельная погрешность и др.) и технико-экономических показателей. К последним относятся: стоимость УСИ, продолжительность их работы до повторной настройки и до ремонта, время на настройку и сам процесс измерения и др.

Настройки многих измерительных средств необходимо производить с помощью настроечной меры (концевые меры, калибр и т. д.). В большинстве случаев величину настроечной меры берут равной номинальному размеру. В этом случае удобно сравнивать показания прибора с предельными отклонениями размера. Однако, не всегда при настройке прибора на номинальный размер интервал шкалы позволяет измерить предельные отклонения. В этом случае настроечную меру берут такой, чтобы интервал шкалы позволял измерить предельные размеры.

5.2 Контрольное задание расчетно-графической работы № 5

Цель задания — научиться определять настроечную меру при настройке измерительного инструмента и строить схему настройки.

Пример решения задания.

Задание.

Для отверстия $\emptyset12U8(^{-0,033}_{-0,060})$, измеряемого с помощью нутромера индикаторного повышенной точности 105, определить настроечную меру при настройке измерительного инструмента и построить схему настройки.

Решение.

У нутромера индикаторного повышенной точности 105 интервал шкалы ± 0.05 мм (таблица A8 приложения).

При настройке индикатора по номинальному размеру 12 мм часть годных отверстий (от 11,94 до 11,95 мм) не попадет в интервал измерений ($\pm 0,05$ мм), так как в данном случае не весь допуск отверстия будет находиться в интервале шкалы инструмента. Для того, чтобы весь допуск отверстия находился в интервале шкалы инструмента выбираем настроечную меру равной 11,94 мм, при этом годные детали будут при показаниях индикатора от 0 до +27 мкм. Схема настройки нутромера индикаторного повышенной точности 105 для измерения отверстия $\emptyset12U8$ показана на рисунке 5.1.

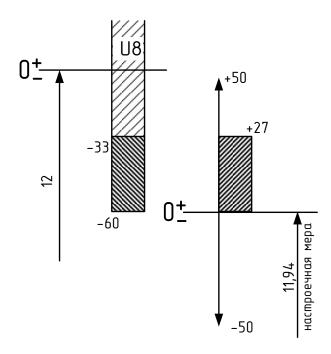


Рисунок 5.1 – Схема настройки нутромера индикаторного повышенной точности 105 для измерения отверстия $\emptyset 12U8$

Варианты для задания приведены в таблице 5.1.

Таблица 5.1 – Варианты для задания

Вариант	Размер	Вариант	Размер	Вариант	Размер	Вариант	Размер
1	110r7	20	66S9	39	75r7	58	52r6
2	105s6	21	46r11	40	36s8	59	195T7
3	125t6	22	155M6	41	2S14	60	23U10
4	100r6	23	18s8	42	40T9	61	87r7
5	85u8	24	98R8	43	71R7	62	49T9
6	24r12	25	171f6	44	4S8	63	64r10
7	85R8	26	35t8	45	105R8	64	230s7
8	8U7	28	302S8	46	160h6	65	11R7
9	220R7	27	28r6	47	10T8	66	32s5
10	180S7	29	58R6	48	50t6	67	202t7
11	80t8	30	45U6	49	250R8	68	89S8
12	110T8	31	38T7	50	25r7	69	18s5
13	100R9	32	84s7	51	12s6	70	82T8
14	16s7	33	51t7	52	20t7	71	105r8
15	55S6	34	70s7	53	82r8	72	35R8
16	38r6	35	50U8	54	9R7	73	28s9
17	3R8	36	30R9	55	284s6	74	62r9
18	28U7	37	171s8	56	61t6	75	43t6
19	131r12	38	144U7	57	125S8		

6 РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА № 6 «РЕШЕНИЕ ПРОВЕРОЧНОЙ ЗАДАЧИ ТЕОРИИ РАЗМЕРНЫХ ЦЕПЕЙ»

6.1 Основные понятия, обозначения и методика решения

Собранные из отдельных деталей машина или механизм, будут нормально работать только в том случае, если каждая деталь изготовлена с заданной точностью и правильно занимает предназначенное для нее место среди других деталей, выполняя свои функции. Необходимое положение поверхностей деталей и их осей относительно других деталей в собранном изделии обеспечивается расчетом размерных цепей.

Размерная цепь — это совокупность взаимосвязанных размеров, образующих замкнутый контур и непосредственно участвующих в решении поставленной задачи. Размерные цепи могут быть: конструкторские, технологические, измерительные. Все размеры, входящие в размерную цепь называют звеньями и обозначают одной прописной буквой русского алфавита с соответствующим индексом. Звенья размерной цепи разделяют на составляющие и замыкающие. Замыкающее звено может быть только одно. Это звено, которое получается последним в результате решения поставленной задачи при измерении. Составляющих звеньев может быть различное количество, определяемое назначением изделия и решением поставленной задачи.

Увеличивающими называют такие звенья, с увеличением размеров которых замыкающее звено увеличивается, а **уменьшающими** такие, с увеличением которых замыкающее звено уменьшается.

С этой целью замыкающему звену дают направление стрелкой налево и обходят все звенья, начиная с замыкающего так, чтобы образовался замкнутый поток направлении. Тогда при обходе по замкнутому контуру все составляющие звенья, имеющие направление стрелок налево будут уменьшающими, а с направлением стрелок направо –увеличивающими.

В зависимости от взаимного расположения звеньев размерные цепи разделяют на линейные (с параллельными звеньями), плоские и пространственные. Все размерные цепи рассчитывают по формулам для линейных цепей.

При решении размерных цепей различают две задачи:

1 Необходимо определить номинальный размер, допуск и предельные отклонения замыкающего звена по известным номинальным размерам и предельным отклонениям составляющих звеньев. Эту задачу называют обратной и часто применяют для проверочных расчетов. Она имеет однозначное и достаточно простое решение.

2 Необходимо определить допуск и предельные отклонения всех составляющих звеньев по известным номинальным размерам звеньев, допуску и предельным отклонениям замыкающего звена. Эту задачу называют прямой. Она достаточно сложна и имеет несколько решений.

Размерные цепи могут решаться методами, дающими различные результаты. Предусмотрены следующие методы: полной взаимозаменяемости (на максимум-минимум); неполной взаимозаменяемости (с использованием положений теории вероятностей); групповой взаимозаменяемости; метод пригонки; метод регулирования.

Принятые обозначения:

 $A_1, A_2, ... A_i$ – обозначение и номинальный размер звеньев размерной цепи A;

 A_{Δ} –обозначение и номинальный размер замыкающего звена размерной цепи A;

 $A_{\Delta max},\ A_{\Delta min},\ A_{\Delta C}$ — максимальный, минимальный и средний размер замыкающего звена размерной цепи A;

 $A_{i}^{y_{B}}$ – номинальный размер увеличивающего i-го составляющего звена размерной цепи A;

 $A_{i}^{y_{M}}$ – номинальный размер уменьшающего і-го составляющего звена размерной цепи A;

 $A_{i\,max}^{y\,B}, A_{i\,min}^{y\,B}, A_{iC}^{y\,B}$ – максимальный, минимальный и средний размер увеличивающего іго составляющего звена размерной цепи A;

 $A_{i\,max}^{y\,m}, A_{i\,min}^{y\,m}, A_{iC}^{y\,m}$ – максимальный, минимальный и средний размер уменьшающего і-го составляющего звена размерной цепи A;

n – количество увеличивающих звеньев;

р - количество уменьшающих звеньев;

m-1 – общее количество составляющих звеньев: n+p=m-1;

т – количество звеньев размерной цепи;

 ESA_{Δ} – верхнее предельное отклонение замыкающего звена размерной цепи A;

 EIA_{Λ} – нижнее предельное отклонение замыкающего звена размерной цепи A;

 ESA_{i} — верхнее предельное отклонение составляющего звена размерной цепи A;

EIA_і – нижнее предельное отклонение составляющего звена размерной цепи А;

 TA_{Δ} – допуск замыкающего звена размерной цепи A;

ТА_і – допуск і-го звена размерной цепи А;

 $E_{C}A_{\Delta}$ – координата середины поля допуска замыкающего звена размерной цепи A;

 $E_{C}A_{i}$ – координата середины поля допуска i-го составляющего звена размерной цепи A.

Основные расчетные формулы

Номинальный размер замыкающего звена размерной цепи А определяют по формуле:

$$A_{\Delta} = \sum_{i=1}^{m-1} \xi_i A_i , \qquad (6.1)$$

где i = 1, 2, ..., m – порядковый номер звена размерной цепи;

 ξ_{i} – передаточное отношение i-го звена размерной цепи A.

Для линейных размерных цепей (цепей с параллельными звеньями) передаточные отношения равны: $\xi = 1$ для увеличивающих составляющих звеньев; $\xi = -1$ для уменьшающих составляющих звеньев.

Поэтому для линейных размерных цепей зависимость (4.1) записывают в виде:

$$A_{\Delta} = \sum_{i=1}^{n} A_{i}^{yB} - \sum_{i=1}^{p} A_{i}^{yM}, \tag{6.2}$$

где п – количество увеличивающих звеньев;

р - количество уменьшающих звеньев.

Допуск замыкающего звена TA_{Δ} при расчете на максимум-минимум находят по формуле:

$$TA_{\Delta} = \sum_{i=1}^{m-1} |\xi_i| TA_i.$$
 (6.3)

Координату середины поля допуска $E_C A_\Delta$ замыкающего звена размерной цепи A вычисляют по зависимости:

$$E_{C}A_{\Delta} = \sum_{i=1}^{m-1} \xi_{i}(E_{C}A_{i}).$$
 (6.4)

Предельные отклонения замыкающего звена A_{Δ} определяют:

$$ESA_{\Delta} = E_{C}A_{\Delta} + \frac{TA_{\Delta}}{2}.$$
 (6.5)

$$EIA_{\Delta} = E_{C}A_{\Delta} - \frac{TA_{\Delta}}{2}.$$
 (6.6)

Предельные значения замыкающего звена

$$A_{\Lambda \max} = A_{\Lambda} + ESA_{\Lambda}. \tag{6.7}$$

$$A_{\Lambda \min} = A_{\Lambda} + EIA_{\Lambda}. \tag{6.8}$$

$$A_{\Delta C} = A_{\Delta} + E_C A_{\Delta}. \tag{6.9}$$

или

$$A_{\Delta \max} = \sum_{i=1}^{n} A_{i \max}^{y_B} - \sum_{i=1}^{p} A_{i \min}^{y_M}.$$
 (6.10)

$$A_{\Delta \min} = \sum_{i=1}^{n} A_{i \min}^{y_B} - \sum_{i=1}^{p} A_{i \max}^{y_M}.$$
 (6.11)

$$A_{\Delta C} = \sum_{i=1}^{n} A_{iC}^{yB} - \sum_{i=1}^{p} A_{iC}^{yM}.$$
 (6.12)

При расчете вероятностным методом допуск замыкающего звена находят по формуле:

$$TA_{\Delta} = t_{\Delta} \sqrt{\sum_{i=1}^{m-1} \xi_{i}^{2} \lambda_{i}^{2} T A_{i}^{2}}.$$
 (6.13)

где t_{Δ} – коэффициент риска, принимаемый по справочным данным.

Для размерных цепей с параллельными звеньями (линейные размерные цепи) $\xi_{_{i}}^{2}=1.$

При нормальном законе распределении отклонений (закон Гаусса) коэффициент $\lambda_i^2 = \frac{1}{9}$ (для массового и крупносерийного производства).

При распределении отклонений по закону треугольника (закон Симпсона) $\lambda_i^2 = \frac{1}{6}$ (серийное производство).

При распределении отклонений по закону равной вероятности $\lambda_{_{i}}^{2} = \frac{1}{3}$ (единичное про-изводство).

При нормальном законе распределении расчета формула (2.13) преобразуется к следующему виду:

$$TA_{\Delta} = \sqrt{\sum_{i=1}^{m-1} \xi_{i}^{2} TA_{i}^{2}}.$$
 6.14)

Предельные значения замыкающего звена в этом случае

$$A_{\Delta \max} = A_{\Delta C} + \frac{TA_{\Delta}}{2}.$$
 (6.15)

$$A_{\Delta \min} = A_{\Delta C} - \frac{TA_{\Delta}}{2}.$$
 (6.16)

6.2 Контрольное задание расчетно-графической работы № 6

Цель заданий – научиться построению и расчету конструкторских размерных цепей при решении проверочной задачи теории размерных цепей.

Пример решения задания.

Задание.

Даны две детали 1 и 2 с соответствующими размерами (рисунок 6.1). После сборки деталь 2 вставляется в отверстие детали 1, при этом происходит соприкосновение деталей по одному из двух торцов. Определить номинальную, максимальную и минимальную возможную величину зазора между оставшимися свободными торцами деталей после сборки. Методы расчета: «максимум-минимум» и вероятностный при нормальном законе распределения.

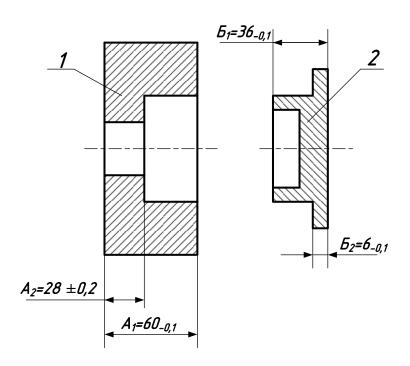


Рисунок 6.1 – Эскиз деталей к примеру задания

Решение.

Определим, по какому торцу происходит соприкосновение деталей. Из рисунка 6.1 можно определить номинальный размер глубины отверстия детали 1: 60 - 28 = 32 мм, а также номинальный размер выступа детали 2: 36 - 6 = 30 мм (рисунок 6.2).

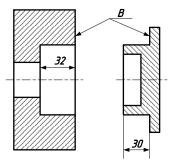


Рисунок 6.2 – Определение торцов соприкосновения деталей

После сборки соединение примет вид, показанный на рисунке 6.3.

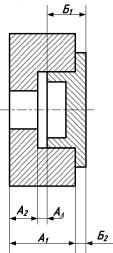


Рисунок 6.3 – Соединение деталей

Необходимо определить величину зазора A_{Δ} . Для этого построим размерную цепь, пользуясь рисунком 6.8. В размерной цепи (рисунок 6.4): A_{Δ} – замыкающее звено, A_1 и B_2 – увеличивающие звенья, A_2 и B_1 – уменьшающие звенья.

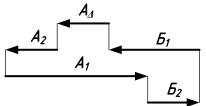


Рисунок 6.4 – Схема размерной цепи

Определим величину зазора расчетом на «максимум-минимум». По формуле (6.2) определим номинальный размер зазора

$$A_{\Delta} = A_1 + B_2 - A_2 - B_1,$$

$$A_{\Delta} = 60 + 6 - 28 - 36 = 2 \text{ mm}.$$

По формулам (6.10) и (6.11) определим максимальный и минимальный размеры зазора

$$A_{\Delta max} = A_{1max} + F_{2max} - A_{2min} - F_{1min},$$

$$A_{\Delta max} = 60 + 6 - 27.8 - 35.9 = 2.3 \text{ mm}.$$

$$A_{\Delta min} = A_{1min} + B_{2min} - A_{2max} - B_{1max},$$

$$A_{\Delta max} = 59.9 + 5.9 - 28.2 - 36 = 1.6 \text{ MM}.$$

Величина зазора $A_{\Delta} = 2^{+0,3}_{-0,4}$ мм.

Определим величину зазора вероятностным методом. По формуле (6.12) определим средний размер зазора

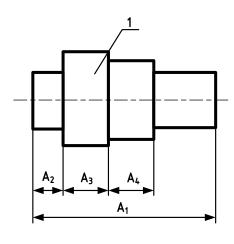
$$A_{\Lambda c} = A_{1c} + B_{2c} - A_{2c} - B_{1c}$$

$$A_{\Lambda c} = 59,95 + 5,95 - 28 - 35,95 = 1,95 \text{ MM}.$$

По формуле (6.14) определим допуск зазора

$$TA_{\Delta} = \sqrt{0,1^2 + 0,1^2 + 0,4^2 + 0,1^2} = 0,43 \text{ mm}.$$

Максимальный и минимальный размеры зазора определим по формулам (6.15) и (6.16)


$$A_{\Delta max} = 1.95 + \frac{0.43}{2} = 2.165 \text{ MM}.$$

$$A_{\Delta \min} = 1.95 - \frac{0.43}{2} = 1.735 \text{ MM}.$$

Величина зазора по вероятностному методу $A_{\Delta}=2^{+0.165}_{-0.265}\,$ мм.

Варианты задания

Даны две детали 1 и 2 с соответствующими размерами (рисунки 6.5–6.9). После сборки деталь 1 вставляется в отверстие детали 2, при этом происходит соприкосновение деталей по одному из трех торцов. Определить номинальную, максимальную и минимальную возможную величину зазоров между оставшимися свободными торцами деталей после сборки. Методы расчета: максимум-минимум и вероятностный при нормальном законе распределения (если число составляющих звеньев не менее четырех). Размеры для соответствующих вариантов указаны в таблице 6.1.

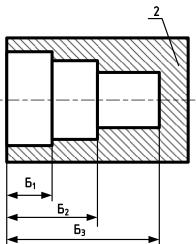
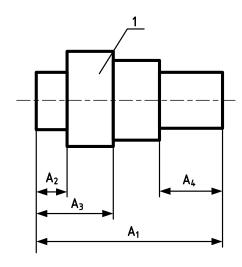
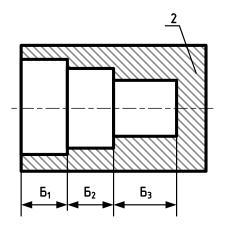




Рисунок 6.5

A₂
A₃
A₁

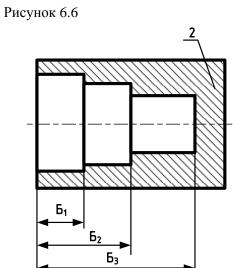
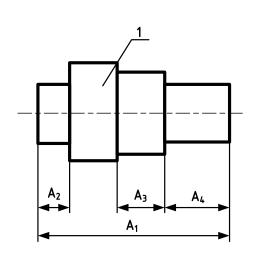



Рисунок 6.7

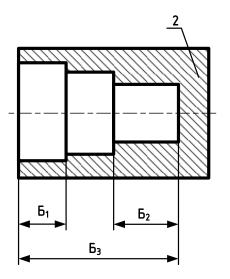


Рисунок 6.8

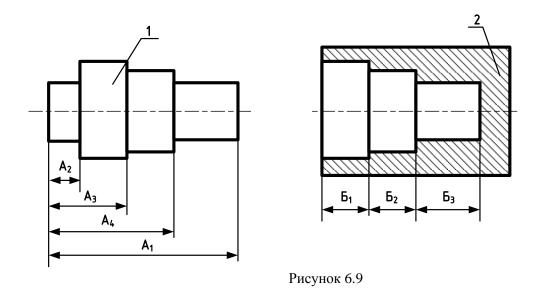


Таблица 6.1 – Варианты для задания расчетно-графической работы № 6

Вариант	A_1	A_2	A_3	A_4	Б ₁	\overline{b}_2	Б ₃	Рисунок
1	185-0,5	30±0,3	40-0,4	50±0,4	39±0,3	91±0,4	157±0,5	6.5
2	140-0,5	30±0,3	50±0,4	37±0,4	19±0,4	55±0,4	37±0,4	6.6
3	100-0,5	30±0,3	50±0,4	16±0,4	19±0,4	55±0,4	72±0,4	6.7
4	100-0,5	10±0,3	50±0,4	34±0,4	19±0,4	35±0,4	107±0,4	6.8
5	189-0,5	10±0,3	50±0,4	83±0,4	19±0,4	35±0,4	107±0,4	6.9
6	185-0,5	30±0,3	40-0,4	50±0,4	39±0,3	87±0,4	156±0,5	6.5
7	143-0,5	30±0,3	50±0,4	33±0,4	19±0,4	55±0,4	37±0,4	6.6
8	100-0,5	30±0,3	50±0,4	11±0,4	19±0,4	55±0,4	69±0,4	6.7
9	140-0,5	30±0,3	50±0,4	54±0,4	19±0,4	55±0,4	121±0,4	6.8
10	140-0,5	30±0,3	50±0,4	111±0,4	19±0,4	54±0,4	32±0,4	6.9
11	185-0,5	24±0,3	40-0,4	50±0,4	39±0,3	87±0,4	156±0,5	6.5
12	143-0,5	30±0,3	50±0,4	37±0,4	19±0,4	55±0,4	33±0,4	6.6
13	100-0,5	30±0,3	52±0,4	37±0,4	22±0,4	35±0,4	69±0,4	6.7
14	100-0,5	30±0,3	52±0,4	17±0,4	19±0,4	15±0,4	86±0,4	6.8
15	100-0,5	30±0,3	37±0,4	82±0,4	19±0,4	45±0,4	15±0,4	6.9
16	86-0,5	17±0,2	39 _{-0,3}	17±0,3	59±0,3	78±0,3	92±0,5	6.5
17	124-0,3	44±0,2	65±0,3	47±0,3	43±0,3	14±0,3	47±0,3	6.6
18	114 _{-0,3}	44±0,2	65±0,3	47±0,3	43±0,3	62±0,3	110±0,3	6.7
19	174 _{-0,3}	44±0,2	65±0,3	31±0,3	43±0,3	32±0,3	143±0,3	6.8
20	237 _{-0,3}	44±0,2	65±0,3	95±0,3	43±0,3	32±0,3	143±0,3	6.9
21	86-0,5	17±0,2	39 _{-0,3}	17±0,3	59±0,3	74±0,3	91±0,5	6.5
22	130-0,3	44±0,2	65±0,3	47±0,3	43±0,3	14±0,3	48±0,3	6.6
23	114 _{-0,3}	44±0,2	65±0,3	44±0,3	43±0,3	62±0,3	108±0,3	6.7
24	184-0,3	44±0,2	65±0,3	61±0,3	43±0,3	62±0,3	165±0,3	6.8
25	184-0,3	44±0,2	65±0,3	129±0,3	43±0,3	61±0,3	56±0,3	6.9
26	86-0,5	12±0,2	39 _{-0,3}	17±0,3	59±0,3	75±0,3	91±0,5	6.5
27	130 _{-0,3}	44±0,2	$65\pm0,3$	48±0,3	$43\pm0,3$	14±0,3	47±0,3	6.6

Продолжение таблицы 6.1

Вариант	A_1	A_2	A_3	A_4	Б ₁	Б ₂	Б ₃	Рисунок
28	114-0,3	44±0,2	65±0,3	47±0,3	46±0,3	62±0,3	106±0,3	6.7
29	114-0,3	44±0,2	65±0,3	47±0,3	43±0,3	45±0,3	152±0,3	6.8
30	114-0,3	44±0,2	47±0,3	65±0,3	43±0,3	18±0,3	45±0,3	6.9
31	130 _{-0,5}	28±0,2	33 _{-0,3}	45±0,3	31±0,3	79±0,3	104±0,5	6.5
32	155-0,4	28±0,2	65±0,4	45±0,4	25±0,4	48±0,4	46±0,4	6.6
33	105-0,4	28±0,2	65±0,4	45±0,4	25±0,4	48±0,4	95±0,4	6.7
34	155-0,4	28±0,2	65±0,4	37±0,4	25±0,4	38±0,4	131±0,4	6.8
35	230-0,4	28±0,2	65±0,4	100±0,4	25±0,4	38±0,4	131±0,4	6.9
36	132-0,5	28±0,2	33-0,3	45±0,3	31±0,3	73±0,3	103±0,5	6.5
37	160-0,4	28±0,2	65±0,4	45±0,4	25±0,4	48±0,4	48±0,4	6.6
38	105-0,4	28±0,2	65±0,4	40±0,4	25±0,4	48±0,4	91±0,4	6.7
39	155-0,4	28±0,2	65±0,4	46±0,4	25±0,4	48±0,4	135±0,4	6.8
40	155-0,4	28±0,2	65±0,4	113±0,4	25±0,4	46±0,4	44±0,4	6.9
41	132-0,5	24±0,2	33-0,3	45±0,3	36±0,3	76±0,3	104±0,5	6.5
42	160-0,4	28±0,2	65±0,4	48±0,4	25±0,4	46±0,4	45±0,4	6.6
43	105-0,4	28±0,2	65±0,4	43±0,4	28±0,4	48±0,4	88±0,4	6.7
44	105-0,4	28±0,2	65±0,4	43±0,4	25±0,4	41±0,4	130±0,4	6.8
45	105-0,4	28±0,2	43±0,4	60±0,4	25±0,4	15±0,4	41±0,4	6.9
46	90-0,4	21±0,2	23-0,3	40±0,3	21±0,2	64±0,3	71±0,4	6.5
47	101 _{-0,3}	21±0,2	42±0,3	27±0,3	20±0,3	35±0,3	28±0,3	6.6
48	81-0,3	21±0,2	42±0,3	29±0,3	20±0,3	35±0,3	66±0,3	6.7
49	121-0,3	21±0,2	42±0,3	24±0,3	20±0,3	25±0,3	90±0,3	6.8
50	154-0,3	21±0,2	42±0,3	65±0,3	20±0,3	25±0,3	90±0,3	6.9
51	92-0,4	21±0,2	23-0,3	40±0,3	21±0,2	58±0,3	71±0,4	6.5
52	106-0,3	21±0,2	42±0,3	27±0,3	20±0,3	35±0,3	29±0,3	6.6
53	81-0,3	21±0,2	42±0,3	25±0,3	20±0,3	35±0,3	63±0,3	6.7
54	121-0,3	21±0,2	42±0,3	33±0,3	20±0,3	35±0,3	94±0,3	6.8
55	121-0,3	21±0,2	42±0,3	78±0,3	20±0,3	33±0,3	45±0,3	6.9
56	92-0,4	21±0,2	23-0,3	40±0,3	27±0,2	65±0,3	71±0,4	6.5
57	106-0,3	21±0,2	42±0,3	29±0,3	20±0,3	35±0,3	27±0,3	6.6
58	81-0,3	21±0,2	42±0,3	28±0,3	23±0,3	35±0,3	60±0,3	6.7
59	81-0,3	21±0,2	42±0,3	28±0,3	20±0,3	26±0,3	87±0,3	6.8
60	81-0,3	21±0,2	28±0,3	52±0,3	20±0,3	23±0,3	26±0,3	6.9
61	62-0,5	15±0,2	17 _{-0,3}	15±0,3	16±0,3	34±0,3	50±0,5	6.5
62	76-0,2	15±0,2	20±0,2	15±0,2	6±0,2	42±0,4	15±0,2	6.6
63	46-0,2	15±0,2	20±0,2	15±0,2	6±0,2	14±0,4	31±0,2	6.7
64	96-0,2	15±0,2	20±0,2	3±0,2	6±0,2	4±0,4	33±0,2	6.8
65	64-0,2	15±0,2	20±0,2	32±0,2	6±0,2	14±0,4	33±0,2	6.9
66	64-0,5	15±0,2	17 _{-0,3}	15±0,3	16±0,3	28±0,3	49±0,5	6.5
67	80-0,2	15±0,2	20±0,2	15±0,2	6±0,2	42±0,4	18±0,2	6.6
68	46-0,2	15±0,2	20±0,2	10±0,2	6±0,2	14±0,4	26±0,2	6.7
69	76-0,2	15±0,2	20±0,2	11±0,2	6±0,2	14±0,4	37±0,2	6.8

Продолжение таблицы 6.1

Вариант	A_1	A_2	A_3	A_4	Б1	\overline{b}_2	Б ₃	Рисунок
70	76 _{-0,2}	15±0,2	20±0,2	34±0,2	6±0,2	11±0,2	44±0,4	6.9
71	64 _{-0,5}	15±0,2	17 _{-0,3}	15±0,3	22±0,3	35±0,3	50±0,5	6.5
72	80-0,2	15±0,2	20±0,2	18±0,2	6±0,2	42±0,4	15±0,2	6.6
73	46-0,2	15±0,2	26±0,2	19±0,2	9±0,2	14±0,4	30±0,2	6.7
74	46-0,2	15±0,2	26±0,2	19±0,2	6±0,2	17±0,4	48±0,2	6.8
75	46-0,2	15±0,2	19±0,2	36±0,2	6±0,2	17±0,2	17±0,4	6.9

СПИСОК ЛИТЕРАТУРЫ

- 1 ГОСТ 25346-89 Основные нормы взаимозаменяемости. Единая система допусков и посадок. Общие положения, ряды допусков и основных отклонений. Введ. 1990-01-01.
- 2 ГОСТ 25347-82 Основные нормы взаимозаменяемости. Единая система допусков и посадок. Поля допусков и рекомендуемые посадки. Введ. 1990-01-01.
- 3 ГОСТ 2.307-68 ЕСКД. Нанесение размеров и предельных отклонений. Госстандарт России. : Изд-во стандартов, № 1989. Взамен ГОСТ 3458-59, ГОСТ 9171-59, ГОСТ 5292-60 в части разд. III; Введ. 1971-01-01. 21 с.
- $4~\Gamma OCT~2.308-79~E CKД$. Указание на чертежах допусков формы и расположения поверхностей. Взамен $\Gamma OCT~2.308-68$; Введ. 1980-01-01.-20~c.
- 5 ГОСТ 2.309-73 ЕСКД. Обозначение шероховатости поверхностей. Взамен ГОСТ 2.309-68; Введ. 1975-01-01. 7 с.
- 6 ГОСТ 2789-73 ЕСКД. Шероховатость поверхности. Параметры, характеристики и обозначения. Взамен ГОСТ 2789-59; Введ. 1975-01-01. 10 с.
- 7 Нормирование точности и технические измерения деталей [Электронный ресурс]: учеб. пособие / Чеботарёв М.И., Кадыров М.Р. Электрон. текст. дан. Краснодар: Куб-ГАУ, 2016. 146 с. ISBN 978-5-00097-055-3. Режим доступа: http://edu.kubsau.ru/file.php/115/01 Normirovanie tochnosti i tekhnicheskie izmerenija_detalei.pdf.
- 8 Нормирование точности в соединениях деталей машин [Текст]: учеб. пособие / Чеботарёв М.И., Кадыров М.Р. Краснодар: КубГАУ, 2017. 187 с. ISBN 978-5-00097-431-5.

ОГЛАВЛЕНИЕ

Введение	3
 Расчетно-графическая работа № 1 «Система допусков и посадок 	
гладких соединений»	4
2 Расчетно-графическая работа № 2 «Погрешности формы и расположения	
поверхностей»	24
3 Расчетно-графическая работа № 4 «Шероховатость поверхности»	49
4 Расчетно-графическая работа № 4 «Определение	
производственного допуска»	66
5 Расчетно-графическая работа № 5 «Определение настроечной меры	
при настройке измерительного инструмента»	71
6 Расчетно-графическая работа № 5 «Решение проверочной задачи	
теории размерных цепей»	73
Список литературы	83
Приложение А – Справочные таблицы	85
Приложение Б – Текст расчетно-графической работы № 1 «Система	
допусков и посадок гладких соединений»	103
Приложение В – Текст расчетно-графической работы № 2 «Погрешности	
формы и расположения поверхностей»	112
Приложение Г – Текст расчетно-графической работы № 3 «Шероховатость	
поверхности»	117
Приложение Д – Текст расчетно-графической работы № 4 «Определение	
производственного допуска»	121
Приложение E – Текст расчетно-графической работы № 5 «Определение	
настроечной меры при настройке измерительного инструмента»	125
Приложение E – Текст расчетно-графической работы № 6 «Решение	
проверочной задачи теории размерных цепей»	128

ПРИЛОЖЕНИЕ А Справочные таблицы

Таблица A1 – Поля допусков валов при номинальных размерах от 1 до 500 мм. Предельные отклонения по ГОСТ 25347

	Предел	BIBIC OTKJ	онсния п	010C12		IN OROD				
Интервал					Поля дог	r e				
размеров, мм	h01 ^x	j _s 01 ^x	h0 ^x	j_s0^x	h1 ^x	$j_s 1^x$	h2 ^x	$j_s 2^x$	h3 ^x	$j_s 3^x$
				Преде	льные отк	лонения, м	ИКМ			
От 1 до 3	0 -0,3	+0,15 -0,15	0 -0,5	+0,25 -0,25	0 -0,8	+0,40 -0,40	0 -1,2	+0,60 -0,60	0 -2,0	$^{+1,00}_{-1,00}$
Св. 3 до 6	0 -0,4	+0,20 -0,20	0 -0,6	+0,30 -0,30	0 -1,0	+0,50 -0,50	0 -1,5	+0,75 -0,75	0 -2,5	+1,25 -1,25
Св. 6 до 10	0 0,4	+0,20 -0,20	0 -0,6	+0,30 -0,30	0 -1,0	+0,50 -0,50	0 -1,5	+0,75 -0,75	0 -2,5	+1,25 -1,25
Св. 10 до 14	0	+0,25	0	+0,40	0	+0,60	0	+1,00	0	+1,50
Св. 14 до 18	-0,5	-0,25	-0,8	-0,40	-1,2	-0,60	-2,0	-1,00	-3,0	-1,50
Св. 18 до 24	0	+0,30	0	+0,50	0	+0,75	0	+1,25	0	+2,00
Св. 24 до 30	-0,6	-0,30	-1,0	-0,50	-1,5	-0,75	-2,5	-1,25	-4,0	-2,00
Св. 30 до 40	0	+0,30	0	+0,50	0	+0,75	0	+1,25	0	+2,00
Св. 40 до 50	-0,6	-0,30	-1,0	-0,50	-1,5	-0,75	-2,5	-1,25	-4,0	-2,00
Св. 50 до 65	0	+0,40	0	+0,60	0	+1,00	0	+1,50	0	+2,50
Св. 65 до 80	-0,8	-0,40	-1,2	-0,60	-2,0	-1,00	-3,0	-1,50	-5,0	-2,50
Св. 80 до 100	0	+0,50	0	+0,75	0	+1,25	0	+2,00	0	+3,00
Св. 100 до 120	-1,0	-0,50	-1,5	-0,75	-2,5	-1,25	-4,0	-2,00	-6,0	-3,00
Св. 120 до 140										
Св. 140 до 160	0	+0,60	0	+1,00	0	+1,75	0	+2,50	0	+4,00
Св. 160 до 180	-1,2	-0,60	-2,0	-1,00	-3,5	-1,75	-5,0	-2,50	-8,0	-4,00
Св. 180 до 200										
	0	+1,00	0	+1,50	0	+2,25	0	+3,50	0	+5,00
Св. 200 до 225	-2,0	-1,00	-3,0	-1,50	-4,5	-2,25	-7,0	-3,50	-10,0	-5,00
Св. 225 до 250										
Св. 250 до 280	0	+1,25	0	+2,00	0	+3,00	0	+4,00	0	+6,00
Св. 280 до 315	-2,5	-1,25	-4,0	-2,00	-6,0	-3,00	-8,0	-4,00	-12,0	-6,00
Св. 315 до 355	0	+1,50	0	+2,50	0	+3,50	0	+4,50	0	+6,50
Св. 355 до 400	-3,0	-1,50	-5,0	-2,50	-7,0	-3,50	-9,0	-4,50	-13,0	-6,50
Св. 400 до 450	0	+2,00	0	+3,00	0	+4,00	0	+5,00	0	+7,50
Св. 450 до 500	-4,0	-2,00	-6,0	-3,00	-8,0	-4,00	-10,0	-5,00	-15,0	-7,50

Crit 130 S S S S S S S S S	Продолжение	таоли	цы А	Į.												
Decision								Пол	я допу	сков						
Or 1 no 3	-	g4	h4	j _s 4	k4	m4	n4	g5	h5	j _s 5	k5	m5	n5	p5	r5	s5
Chi 1 20 S S S S S S S S S							Пред	ельны	е откло	нения,	MKM					
CR. 62 ao 10	От 1 до 3								_			-				+18 +14
CB. 63 0 10	Св. 3 до 6		-									_				
C8. 14 ao 18	Св. 6 до 10															
CB. 18 20 24	Св. 10 до 14	-6	0	+2,5	+6	+12	+17	-6	0	+4,0	+9	+15	+20	+26	+31	+36
Cn. 24 no 30	Св. 14 до 18	-11	-5	-2,5	+1	+7	+12	-14	-8	-4,0	+1	+7	+12	+18	+23	+28
Cn. 30 µ0 40	Св. 18 до 24	-7	0		+8	+14	+21	-7	0	+4,5	+11	+17	+24	+31	+37	+44
CB. 40 30 50	Св. 24 до 30	-13	-6	-3,0	+2	+8	+15	-16	-9	-4,5	+2	+8	+15	+22	+28	+35
CB. 50 π0 65 -10	Св. 30 до 40															
CB. 50 Ato 65	Св. 40 до 50	-16	-7	-3,5	+2	+9	+17	-20	-11	-5,5	+2	+9	+17	+26		
CB. 80 po 100	Св. 50 до 65	-10	0	+4,0	+10	+19	+28	-10	0	+6,5	+15	+24	+33	+45		+53
CB. 80 / 80 100	Св. 65 до 80	-18	-8	-4,0	+2	+11	+20	-23	-13	-6,5	+2	+11	+20	+32		+59
CB. 120 до 140 CB. 120 до 140 —14 —14 —14 —15 —15 —15 —16 —16 —17 —18 —18 —19 —19	Св. 80 до 100	-12	0	+5,0	+13	+23	+33	-12	0	+7,5	+18	+28	+38	+52	+51	
CB. 120 πο 140 -14 0 +6,0 +15 +27 +39 -14 0 +9,0 +21 +33 +45 +61 -26 -12 -6,0 +3 +15 +27 -32 -18 -9,0 +3 +15 +27 +43 +65 +100 CB. 140 πο 180 CB. 180 πο 200 CB. 180 πο 200 -15 0 +7,0 +18 +31 +45 -15 0 +10,0 +24 +37 +51 +70 +100 +150 +100 -15 CB. 225 πο 250 -17 0 +8,0 +20 +36 +50 -17 0 +11,5 +27 +43 +57 +79 +94 +158 -28 280 πο 315 -33 -16 -8,0 +4 +20 +34 -40 -23 -11,5 +4 +20 +34 +56 +121 +193 +98 +170 -28 315 πο 355 -18 0 +9,0 +25 +43 +60 -20 0 +10,0 +24 +37 +51 +70 +100 +150 +100 +150 +100 +150 +100 +160 +160 +100 +10	Св. 100 до 120	-22	-10	-5,0	+3	+13	+23	-17	-15	-7,5	+3	+13	+23	+37		+94 +79
CB. 140 до 160 CB. 160 до 180 CB. 180 до 200 CB. 225 до 250 CB. 225 до 250 CB. 250 до 280 CB. 250 до 280 CB. 315 до 355 CB. 315 до 355 CB. 355 до 400 CB. 360 до 260 CB. 47,0 44 421 437 443 450 CB. 355 до 400 CB. 360 до 260 CB. 360 до 260 CB. 360 до 360	Св. 120 до 140															
Св. 140 до 180 — 26 — 12 — 6,0 — +3 — +15 — +27 — 32 — 18 — 9,0 — +3 — +15 — +27 — +43 — +65 — +100 — +86 — +108	~	-14	0	+6,0	+15	+27	+39	-14	0	+9,0	+21	+33	+45	+61	+83	
CB. 180 до 200 CB. 200 до 225 CB. 200 до 225 CB. 225 до 250 CB. 225 до 250 CB. 280 до 315 CB. 280 до 315 CB. 315 до 355 CB. 315 до 355 CB. 355 до 400 CB. 355 до 400 CB. 400 до 450 CB. 400 до 450 CB. 400 до 450 CB. 200 до 200 CB. 180 до 200 CB. 47,0	Св. 140 до 160	-26	-12	-6,0	+3	+15	+27	-32	-18	-9,0	+3	+15	+27	+43	+65	+100
Св. 180 до 200 Св. 200 до 225 —29 —14 —7,0 —44 —17 —18 —31 —45 —20 —10,0 —10,0 —44 —17 —10,0 —10,	Св. 160 до 180															+126 +108
Св. 200 до 225 Св. 225 до 250 Св. 225 до 250 Св. 225 до 250 Св. 225 до 280 —17 О	Св. 180 до 200															+142 +122
Св. 225 до 250 Св. 250 до 280 ———————————————————————————————————	Св. 200 до 225															+150 +130
Св. 250 до 280 — 17 0	Св. 225 до 250	_29	-14	-7,0	+4	+17	+31	-33	-20	-10,0	+4	+17	+31	+30		+160 +140
Св. 280 до 315	Св. 250 до 280	-17	0	+8,0	+20	+36	+50	-17	0	+11,5	+27	+43	+57	+79		+181 +158
Св. 315 до 355 — 18 0 +9,0 +22 +39 +55 — 18 0 +12,5 +29 +46 +62 +87 +133 +215 +108 +190 Св. 355 до 400 — 36 — 18 — 9,0 +4 +21 +37 — 43 — 25 — 12,5 +4 +21 +37 +62 +139 +233 +114 +208 Св. 400 до 450 — 20 0 +10,0 +25 +43 +60 — 20 0 +13,5 +32 +50 +67 +95 +126 +232 Св. 450 до 500 — 40 — 20 — 10,0 +5 +23 +40 — 47 — 27 — 13,5 +5 +23 +40 +68 +159 +279	Св. 280 до 315	-33	-16	-8,0	+4	+20	+34	-40	-23	-11,5	+4	+20	+34	+56		+193 +170
Св. 355 до 400	Св. 315 до 355	-18	0	+9,0	+22	+39	+55	-18	0	+12,5	+29	+46	+62	+87	+133	+215 +190
Св. 400 до 450 — 20 0 +10,0 +25 +43 +60 — 20 0 +13,5 +32 +50 +67 +95 +153 +259 +126 +232	Св. 355 до 400	-36	-18	-9,0	+4	+21	+37	-43	-25	-12,5	+4	+21	+37	+62	+139	+233 +208
Cn 450 ro 500	Св. 400 до 450	-20	0	+10,0	+25	+43	+60	-20	0	+13,5	+32	+50	+67	+95	+153	+259 +232
	Св. 450 до 500	-40	-20	-10,0	+5	+23	+40	-47	-27	-13,5	+5	+23	+40	+68		+279 +252

Интервал размеров, мм От 1 до 3 Св. 3 до 6	-6 -12 -10 -18	g6 -2 -8 -4	h6 0	j _s 6	k6	ля допусі т6	n6	р6	r6	s6	t6
От 1 до 3	-12 -10 -18	-8	0	П	l		_	Ι. ~		50	1
	-12 -10 -18	-8	0	1.1	Гредельні	ые отклон	ения, мк	M			
Св. 3 до 6	-10 -18		-6	+3,0 -3,0	+6 0	+8 +2	+10 +4	+12 +6	+16 +10	+20 +14	_
			0	+4,0	+9	+12	+16	+20	+23	+27	_
Св. 6 до 10		-12 -5	-8 0	-4,0 +4,5	+10	+4	+8	+12	+15	+19	_
	-22 -16	-14 -6	-9 0	-4,5 +5,5	+1 +12	+6 +18	+10	+15	+19	+23	
Св. 10 до 14											-
	-27 20	-17	-11	-5,5	+1	+7	+12	+18	+23	+28	
Св. 18 до 24	-20	-7	0	+6,5	+15	+21	+28	+35	+41	+48	+54
Св. 24 до 30	-33	-20	-13	-6,5	+2	+8	+15	+22	+28	+35	+41
Св. 30 до 40	-25	-9	0	+8,0	+18	+25	+33	+42	+50	+59	+64 +48
Св. 40 до 50	-41	-25	-16	-8,0	+2	+9	+17	+26	+34	+43	+70 +54
Св. 50 до 65	-30	-10	0	+9,5	+21	+30	+39	+51	+60 +41	+72 +53	+85 +66
Св. 65 до 80	-49	-29	-19	-9,5	+2	+11	+20	+32	+62 +43	+78 +59	+94 +75
Св. 80 до 100	-36	-12	0	+11,0	+25	+35	+45	+59	+73 +51	+93 +71	+113 +91
Св. 100 до 120	-58	-34	-22	-11,0	+3	+13	+23	+37	+76 +54	+101 +79	+126 +104
Св. 120 до 140									+88 +63	+117 +92	+147 +122
Св. 140 до 160	-43	-14	0	+12,5	+28	+40	+52	+68	+90	+125	+159
Св. 160 до 180	-68	-39	-25	-12,5	+3	+15	+27	+43	+65	+100	+134 +171
Св. 100 до 180									+68	+108	+146
Св. 180 до 200									+106 +77	+151 +122	+195 +166
Св. 200 до 225	-50 -79	-15	0	+14,5	+33	+46	+60	+79	+109 +80	+159 +130	+209 +180
Св. 225 до 250	-19	-44	-29	-14,5	+4	+17	+31	+50	+113 +84	+169 +140	+225 +196
Св. 250 до 280	-56	-17	0	+16,0	+36	+52	+66	+88	+126 +94	+190 +168	+250 +218
Св. 280 до 315	-88	-49	-32	-16,0	+4	+20	+34	+56	+130 +98	+202 +170	+272 +240
Св. 315 до 355	-62	-18	0	+18,0	+40	+57	+73	+98	+144 +108	+226 +190	+304 +268
Св. 355 до 400	-98	-54	-36	-18,0	+4	+21	+37	+62	+108 +150 +114	+244 +208	+330 +294
Св. 400 до 450	-68	-20	0	+20,0	+45	+63	+80	+108	+166	+272	+370
Св. 450 до 500	-108	-60	-40	-20,0	+5	+23	+40	+68	+126 +172 +132	+232 +292 +252	+330 +400 +360

Продолжение	таолицы А	A 1							
				П	оля допуск	ОВ			
Интервал размеров, мм	e7	f7	h7	j _s 7	k7	m7	n7	s7	u7
				Предельн	ные отклон	ения, мкм			
От 1 до 3	-14 -24	-6 -16	0 -10	+5 -5	+10 0	_	+14 +4	+24 +14	+28 +18
Св. 3 до 6	-20 -32	-10 -22	0 -12	+6 -6	+13 +1	+16 +4	+20 +8	+31 +19	+35 +23
Св. 6 до 10	-25 -40	-13 -28	0 -15	+7 -7	+16 +1	+21 +6	+25 +10	+38 +23	+43 +28
Св. 10 до 14	-32	-16	0	+9	+19	+25	+30	+46	+51
Св. 14 до 18	-50	-34	-18	-9	+1	+7	+12	+28	+33
Св. 18 до 24	-40	-20	0	+10	+23	+29	+36	+56	+62 +41
Св. 24 до 30	-61	-41	-21	-10	+2	+8	+15	+35	+69 +48
Св. 30 до 40	-50	-25	0	+12	+27	+34	+42	+68	+85 +60
Св. 40 до 50	-75	-50	-25	-12	+2	+9	+17	+43	+95 +70
Св. 50 до 65	-60	-30	0	+15	+32	+41	+50	+83 +53	+117 +87
Св. 65 до 80	-90	-60	-30	-15	+2	+11	+20	+89 +59	+132 +102
Св. 80 до 100	-72	-36	0	+17	+38	+48	+58	+106 +71	+159 +124
Св. 100 до 120	-107	-71	-35	-17	+3	+13	+23	+114 +79	+179 +144
Св. 120 до 140								+132	+210
	-85	-43	0	+20	+43	+55	+67	+92 +140	+170
Св. 140 до 160	-125	-83	-40	-20	+3	+15	+27	+100	+190
Св. 160 до 180								+148 +108	+250 +210
Св. 180 до 200								+168 +122	+282 +236
C 200 225	-100	-50	0	+23	+50	+63	+77	+176	+304
Св. 200 до 225	-146	-96	-46	-23	+4	+17	+31	+130	+258
Св. 225 до 250								+186 +140	+330 +284
Св. 250 до 280	-110	-56	0	+26	+56	+72	+86	+210 +158	+367 +315
Св. 280 до 315	-162	-108	-52	-26	+4	+20	+34	+222 +170	+402 +350
Св. 315 до 355	-125	-62	0	+28	+61	+78	+94	+247 +190	+447 +390
Св. 355 до 400	-182	-119	-57	-28	+4	+21	+37	+265 +208	+492 +435
Св. 400 до 450	-135	-68	0	+31	+68	+86	+103	+295 +232	+553 +490
Св. 450 до 500	-198	-131	-63	-31	+5	+23	+40	+315 +252	+603 +540

Продолжение	таолиі	цы A I												
]	Поля до	пусков	.					
Интервал размеров, мм	c8	d8	e8	f8	h8	j _s 8 ^x	u8	x8	z8	d9	e9	f9	h9	j _s 9 ^x
					I	Тределі	ьные от	клонен	ия, мкм	1				
От 1 до 3	-60 -74	-20 -34	-14 -28	-6 -20	0 -14	+7 -7	+32 +18	+34 +20	+40 +26	-20 -45	-14 -39	-6 -31	0 -25	+12 -12
Св. 3 до 6	-70	-30	-20	-10	0	+9	+41	+46	+53	-30	-20	-10	0	+15
	-88 -80	-48 -40	-38 -25	-28 -13	-18 0	-9 +11	+23 +50	+28 +56	+35	-60 -40	-50 -25	-40 -13	-30 0	-15 +18
Св. 6 до 10	-102	-62	-47	-35	-22	-11	+28	+34 +67	+42 +77	-76	-61	-49	-36	-18
Св. 10 до 14	-95	-50	-32	-16	0	+13	+60	+40	+50	-50	-32	-16	0	+21
Св. 14 до 18	-122	-77	-59	-43	-27	-13	+33	+72 +45	+87 +60	-93	-75	-59	-43	-21
Св. 18 до 24	-110	-65	-40	-20	0	+16	+74 +41	+87 +54	+106 +73	-65	-40	-20	0	+26
Св. 24 до 30	-143	-98	-73	-53	-33	-16	+81 +48	+97 +64	+121 +88	-117	-92	-72	-52	-26
Св. 30 до 40	-120 -159	-80	-50	-25	0	+19	+99 +60	+119 +80	+151 +112	-80	-50	-25	0	+31
Св. 40 до 50	-130 -169	-119	-89	-64	-39	-19	+109 +70	+136 +97	+175 +136	-142	-112	-87	-62	-31
Св. 50 до 65	-140 -186	-100	-60	-30	0	+23	+133 +87	+168 +122	+218 +172	-100	-60	-30	0	+37
Св. 65 до 80	-150 -196	-146	-106	-76	-46	-23	+148 +102	+192 +146	+256 +210	-174	-134	-104	-74	-37
Св. 80 до 100	-170 -224	-120	-72	-36	0	+27	+178 +124	+232 +178	+312 +258	-120	-72	-36	0	+43
Св. 100 до 120	-180 -234	-174	-126	-90	-54	-27	+198 +144	+264 +210	+364 +310	-207	-159	-123	-87	-43
Св. 120 до 140	-200 -263						+233 +170	+311 +248	+428 +365					
Св. 140 до 160	-210 -273	-145 -208	-85 -148	-43 -106	0 -63	+31	+253 +190	+343 +280	+478 +415	-145 -245	-85 -185	-43 -143	0 -100	+50 -50
Св. 160 до 180	-230 -293	-208	-146	-100	-03	-31	+273 +210	+373 +310	+528 +465	-243	-165	-143	-100	-30
Св. 180 до 200	-240 -312						+308 +236	+422 +350	+592 +520					
Св. 200 до 225	-260	-170	-100	-50	0	+36	+330	+457	+647	-170	-100	-50	0	+57
Св. 200 до 223	-332	-242	-172	-122	-72	-36	+258	+385	+575	-285	-215	-165	-115	-57
Св. 225 до 250	-280 -352						+356 +284	+497 +425	+712 +640					
Св. 250 до 280	-300 -381	-190	-110	-56	0	+40	+396 +315	+556 +475	+791 +710	-190	-110	-56	0	+65
Св. 280 до 315	-330 -411	-271	-191	-137	-81	-40	+431 +350	+606 +525	+871 +790	-320	-240	-186	-130	-65
Св. 315 до 355	-360 -449	-210	-125	-62	0	+44	+479 +390	+679 +590	+989 +900	-210	-125	-62	0	+70
Св. 355 до 400	-400 -489	-299	-214	-151	-89	-44	+524 +435	+749 +660	+1089 +1000	-350	-265	-202	-140	-70
Св. 400 до 450	-440 -537	-230	-135	-68	0	+48	+587 +490	+837 +740	+1197 +1100	-230	-135	-68	0	+77
Св. 450 до 500	-480 -577	-327	-232	-165	-97	-48	+637 +540	+917 +820	+1347 +1250	-385	-290	-223	-155	-77

Продолжение	таблиці	ы А1										
						Поля до	опусков					
Интервал размеров, мм	d10	h10	j _s 10 ^x	a11	B11	c11	d11	h11	j _s 11	b12	H12	j _s 12 ^x
					Преде.	пьные от	клонени	ія, мкм				
От 1 до 3	-20 -60	0 -40	+20 -20	-270 -330	-140 -200	-60 -120	-20 -80	0 -60	+30 -30	-140 -240	0 -100	+50 -50
Св. 3 до 6	-30 -78	0 -48	+24 -24	-270 -345	-140 -215	-70 -145	-30 -105	0 -75	+37 -37	-140 -260	0 -120	+60 -60
Св. 6 до 10	-40 -98	0 -58	+29 -29	-280 -370	-150 -240	-80 -170	-40 -130	0 -90	+45 -45	-150 -300	0 -150	+75 -75
Св. 10 до 14	-50	0	+35	-290	-150	-95	-50	0	+55	-150	0	+90
Св. 14 до 18	-120	-70	-35	-400	-260	-205	-160	-110	-55	-330	-180	-90
Св. 18 до 24	-65	0	+42	-300	-160	-110	-65	0	+65	-160	0	+105
Св. 24 до 30	-149	-84	-42	-430	-290	-240	-195	-130	-65	-370	-210	-105
Св. 30 до 40	-80	0	+50	-310 -470	-170 -330	-120 -280	-80	0	+80	-170 -420	0	+125
Св. 40 до 50	-180	-100	-50	-320 -480	-180 -340	-130 -290	-240	-160	-80	-180 -430	-250	-125
Св. 50 до 65	-100	0	+60	-340 -530	-190 -380	-140 -330	-100	0	+95	-190 -490	0	+150
Св. 65 до 80	-220	-120	-60	-360 -550	-200 -390	-150 -340	-290	-190	-95	-200 -500	-300	-150
Св. 80 до 100	-120	0	+70	-380 -600	-220 -440	-170 -390	-120	0	+110	-220 -570	0	+175
Св. 100 до 120	-260	-140	-70	-410 -630	-240 -460	-180 -400	-340	-220	-110	-240 -590	-350	-175
Св. 120 до 140				-460 -710	-260 -510	-200 -450				-260 -660		
Св. 140 до 160	-145 -305	0 -160	+80 -80	-520 -770	-280 -530	-210 -460	-145 -395	0 -250	+125 -125	-280 -680	0 -400	+200 -200
Св. 160 до 180	303	100	00	-580 -830	-310 -560	-230 -480	373	250	123	-310 -710	400	200
Св. 180 до 200				-660 -950	-340 -630	-240 -530				-340 -800		
Св. 200 до 225	-170 -355	0 -185	+92 -92	-740 -1030	-380 -670	-260 -550	-170 -460	0 -290	+145 -145	-380 -840	0 -460	+230 -230
Св. 225 до 250	333	103)2	-820 -1110	-420 -710	-280 -570	100	2,0	113	-420 -880	100	230
Св. 250 до 280	-190	0	+105	-920 -1240	-480 -800	-300 -620	-190	0	+160	-480 -1000	0	+260
Св. 280 до 315	-400	-210	-105	-1050 -1370	-540 -860	-330 -650	-510	-320	-160	-540 -1060	-520	-260
Св. 315 до 355	-210	0	+115	-1200 -1660	-600 -960	-360 -720	-210	0	+180	-600 -1170	0	+285
Св. 355 до 400	-440	-230	-115	-1350 -1710	-680 -1040	-400 -760	-570	-360	-180	-680 -1250	-570	-285
Св. 400 до 450	-230	0	+125	-1500 -1900	-760 -1160	-440 -840	-230	0	+200	-760 -1390	0	+315
Св. 450 до 500	-480	-250	-125	-1650 -2050	-840 -1240	-480 -880	-630	-400	-200	-840 -1470	-630	-315

Продолжение	Таолицы	AI			Поля до	опусков				
Интервал раз- меров, мм	h13 ^x	j _s 13 ^x	h14 ^x	j _s 14 ^x	h15 ^x	j _s 15 ^x	h16 ^x	j _s 16 ^x	h17 ^x	j _s 17 ^x
меров, мм				Пред	ельные от	клонения	, мкм			
От 1 до 3	0 -140	+70 -70	0 -250	+125 -125	0 -400	+200 -200	0 -600	+300 -300	0 -1000	+500 -500
Св. 3 до 6	0 -180	+90 -90	0 -300	+150 -150	0 -480	+240 -240	0 -750	+375 -375	0 -1200	+600 -600
Св. 6 до 10	0 -220	+110 -110	0 -360	+180 -180	0 -580	+290 -290	0 -900	+450 -450	0 -1500	+750 -750
Св. 10 до 14	0	+135	0	+215	0	+350	0	+550	0	+900
Св. 14 до 18	-270	-135	-430	-215	-700	-350	-1100	-550	-1800	-900
Св. 18 до 24	0	+165	0	+260	0	+420	0	+650	0	+1050
Св. 24 до 30	-330	-165	-520	-260	-840	-420	-1300	-650	-2100	-1050
Св. 30 до 40	0	+195	0	+310	0	+500	0	+800	0	+1250
Св. 40 до 50	-390	-195	-620	-310	-1000	-500	-1600	-800	-2500	-1250
Св. 50 до 65	0	+230	0	+370	0	+600	0	+950	0	+1500
Св. 65 до 80	-460	-230	-740	-370	-1200	-600	-1900	-950	-3000	-1500
Св. 80 до 100	0	+270	0	+435	0	+700	0	+1100	0	+1750
Св. 100 до 120	-540	-270	-870	-435	-1400	-700	-2200	-1100	-3500	-1750
Св. 120 до 140										
Св. 140 до 160	0	+315	0	+500	0	+800	0	+1250	0	+2000
Св. 160 до 180	-630	-315	-1000	-500	-1600	-800	-2500	-1250	-4000	-2000
Св. 180 до 200										
Св. 200 до 225	0	+360	0	+575	0	+925	0	+1450	0	+2300
	-720	-360	-1150	-575	-1850	-925	-2900	-1450	-4600	-2300
Св. 225 до 250										
Св. 250 до 280	0	+405	0	+650	0	+1050	0	+1600	0	+2600
Св. 280 до 315	-810	-405	-1300	-650	-2100	-1050	-3200	-1600	-5200	-2600
Св. 315 до 355	0	+445	0	+700	0	+1150	0	+1800	0	+2850
Св. 355 до 400	-890	-445	-1400	-700	-2300	-1150	-3600	-1800	-5700	-2850
Св. 400 до 450	0	+485	0	+775	0	+1250	0	+2000	0	+3150
Св. 450 до 500	-970	-485	-1550	-775	-2500	-1250	-4000	-2000	-6300	-3150

Таблица A2 – Поля допусков отверстий при номинальных размерах от 1 до 500 мм. Предельные отклонения по ГОСТ 25347

	Преде	льные о	TRIOTIC	1111111101	0012	Поля до	пусков					
Интервал размеров, мм	H01 ^x	Js01 ^x	H0 ^x	Js0 ^x	H1 ^x	Js1 ^x	H2 ^x	Js2 ^x	H3 ^x	Js3 ^x	H4 ^x	Js4 ^x
P ************************************					Преде.	льные от	клонени	ія, мкм				
От 1 до 3	+0,3	+0,15 -0,15	+0,5 0	+0,25 -0,25	+0,8	+0,40 -0,40	+1,2 0	+0,60 -0,60	+2,0	+1,00 -1,00	+3 0	+1,5 -1,5
Св. 3 до 6	+0,4	+0,20 -0,20	+0,6	+0,30 -0,30	+1,0	+0,50 -0,50	+1,5	+0,75 -0,75	+2,5	+1,25 -1,25	+4	+2,0 -2,0
Св. 6 до 10	+0,4	+0,20 -0,20	+0,6	+0,30 -0,30	+1,0	+0,50 -0,50	+1,5 0	+0,75 -0,75	+2,5	+1,25 -1,25	+4 0	+2,0 -2,0
Св. 10 до 14	+0,5	+0,25	+0,8	+0,40	+1,2	+0,60	+2,0	+1,00	+3,0	+1,50	+5	+2,5
Св. 14 до 18	0	-0,25	0	-0,40	0	-0,60	0	-1,00	0	-1,50	0	-2,5
Св. 18 до 24	+0,6	+0,30	+1,0	+0,50	+1,5	+0,75	+2,5	+1,25	+4,0	+2,00	+6	+3,0
Св. 24 до 30	0	-0,30	0	-0,50	0	-0,75	0	-1,25	0	-2,00	0	-3,0
Св. 30 до 40	+0,6	+0,30	+1,0	+0,50	+1,5	+0,75	+2,5	+1,25	+4,0	+2,00	+7	+3,5
Св. 40 до 50	0	-0,30	0	-0,50	0	-0,75	0	-1,25	0	-2,00	0	-3,5
Св. 50 до 65	+0,8	+0,40	+1,2	+0,60	+2,0	+1,00	+3,0	+1,50	+5,0	+2,50	+8	+4,0
Св. 65 до 80	0	-0,40	0	-0,60	0	-1,00	0	-1,50	0	-2,50	0	-4,0
Св. 80 до 100	+1,0	+0,50	+1,5	+0,75	+2,5	+1,25	+4,0	+2,00	+6,0	+3,00	+10	+5,0
Св. 100 до 120	0	-0,50	0	-0,75	0	-1,25	0	-2,00	0	-3,00	0	-5,0
Св. 120 до 140												
Св. 140 до 160	+1,2	+0,60	+2,0	+1,00	+3,5	+1,75	+5,0	+2,50 -2,50	+8,0	+4,00	+12	+6,0 -6,0
Св. 160 до 180		0,00		1,00	Ü	1,75	· ·	2,50	Ü	1,00	Ü	0,0
Св. 180 до 200												
Св. 200 до 225	+2,0	+1,00	+3,0	+1,50 -1,50	+4,5	+2,25 -2,25	+7,0	+3,50	+10,0	+5,00 -5,00	+14	+7,0 -7,0
Св. 225 до 250		1,00		1,50	Ü	2,23	O	3,30	Ü	3,00	Ü	7,0
Св. 250 до 280	+2,5	+1,25	+4,0	+2,00	+6,0	+3,00	+8,0	+4,00	+12,0	+6,00	+16	+8,0
Св. 280 до 315	0	-1,25	0	-2,00	0	-3,00	0	-4,00	0	-6,00	0	-8,0
Св. 315 до 355	+3,0	+1,50	+5,0	+2,50	+7,0	+3,50	+9,0	+4,50	+13,0	+6,50	+18	+9,0
Св. 355 до 400	0	-1,50	0	-2,50	0	-3,50	0	-4,50	0	-6,50	0	-9,0
Св. 400 до 450	+4,0	+2,00	+6,0	+3,00	+8,0	+4,00	+10,0	+5,00	+15,0	+7,50	+20	+10,0
Св. 450 до 500	0	-2,00	0	-3,00	0	-4,00	0	-5,00	0	-7,50	0	-10,0

Продолжение	таолиц	цы А2				Пот	ія допус	PYOP.					
Интервал		***		***	3.55				.	***	3.55	27.5	D.
размеров, мм	G5	H5	Js5	K5	M5	N5	G6	Н6	Js6	K6	M6	N6	P6
		П	П		_		1	нения, м	1		П		Г
От 1 до 3	+6 +2	+4 0	+2,0 -2,0	0 -4	-2 -6	-4 -8	+8 +2	+6 0	+3,0 -3,0	0 -6	-2 -8	-4 -10	-6 -12
Св. 3 до 6	+9 +4	+5 0	+2,5 -2,5	0 -5	-3 -8	−7 −12	+12 +4	+8 0	+4,0 -4,0	+2 -6	-1 -9	-5 -13	−9 −17
Св. 6 до 10	+11 +5	+6 0	+3,0 -3,0	+1 -5	-4 -10	-8 -14	+14 +5	+9 0	+4,5 -4,5	+2 -7	-3 -12	-7 -18	-12 -21
Св. 10 до 14	+14	+8	+4,0	+2	-4	-9	+17	+11	+5,5	+2	-4	-9	-15
Св. 14 до 18	+6	0	-4,0	-6	-12	-17	+8	0	-5,5	-9	-15	-20	-26
Св. 18 до 24	+16	+9	+4,5	+1	-5	-12	+20	+13	+6,5	+2	-4	-11	-18
Св. 24 до 30	+7	0	-4,5	-8	-14	-21	+7	0	-6,5	-11	-17	-24	-31
Св. 30 до 40	+20	+11	+5,5	+2	-5	-13	+25	+16	+8,0	+3	-4	-12	-21
Св. 40 до 50	+9	0	-5,5	-9	-16	-24	+9	0	-8,0	-13	-20	-28	-37
Св. 50 до 65	+23	+13	+6,5	+3	-6	-15	+29	+19	+9,5	+4	-5	-14	-28
Св. 65 до 80	+10	0	-6,5	-10	-19	-28	+10	0	-9,5	-15	-24	-33	-45
Св. 80 до 100	+27	+15	+7,5	+2	-8	-18	+34	+22	+11,0	+4	-6	-16	-30
Св. 100 до 120	+12	0	-7,5	-13	-23	-33	+12	0	-11,0	-18	-28	-38	-52
Св. 120 до 140													
Св. 140 до 160	+32	+18	+9,0 -9,0	+3 -15	−9 −27	-21 -39	+39	+25	+12,5	+4 -21	-8 -33	-20 -45	-36 -61
Св. 160 до 180	+14	0	9,0	13	21	39	+14	0	12,3	21	33	43	01
Св. 180 до 200													
Св. 200 до 225	+35	+20	+10,0	+2	-11	-25	+44	+29	+14,5	+5	-8	-22	-41
Св. 225 до 250	+15	0	-10,0	-18	-31	− 45	+15	0	-14,5	-24	-37	-51	-70
Св. 250 до 280	+40	+23	+11,5	+3	-13	-27	+49	+32	+16,0	+5	-9	-25	-47
Св. 280 до 315	+17	0	-11,5	-20	-36	-50	+17	0	-16,0	-27	-41	-57	-79
Св. 315 до 355	+43	+25	+12,5	+3	-14	-30	+54	+36	+18,0	+7	-10	-26	-51
Св. 355 до 400	+18	0	-12,5	-22	-39	-55	+18	0	-18,0	-29	-46	-62	-87
Св. 400 до 450	+47	+27	+13,5	+2	-16	-33	+60	+40	+20,0	+8	-10	-27	-55
Св. 450 до 500	+20	0	-13,5	-25	-43	-60	+20	0	-20,0	-32	-50	-67	-95

Продолжение	таолиць	I AZ									
		T	T	T	По	ля допус	ков	T	T	T	T
Интервал размеров, мм	F7	G7	Н7	Js7	K7	M7	N7	P7	R7	S7	Т7
					Іредельні ———	ые отклон	нения, мк	M			
От 1 до 3	+16 +6	+12 +2	+10 0	+5 -5	0 -10	-2 -12	-4 -14	-6 -16	-10 -20	-14 -24	_
Св. 3 до 6	+22 +10	+16 +4	+12 0	+6 -6	+3 -9	0 -12	-4 -16	-8 -20	-11 -23	-15 -27	_
Св. 6 до 10	+28 +13	+20 +5	+15 0	+7 -7	+5 -10	0 -15	-4 -19	-9 -24	-13 -28	-17 -32	-
Св. 10 до 14	+34	+24	+18	+9	+6	0	-5	-11	-16	-21	
Св. 14 до 18	+16	+6	0	-9	-12	-18	-23	-29	-34	-39	_
Св. 18 до 24	+41	+28	+21	+10	+6	0	-7	-14	-20	-27	_
Св. 24 до 30	+20	+7	0	-10	-15	-21	-28	-35	-41	-48	-33 -54
Св. 30 до 40	+50	+34	+25	+12	+7	0	-8	-17	-25	-34	-39 -64
Св. 40 до 50	+25	+9	0	-12	-18	-25	-33	-42	-50	-59	-45 -70
Св. 50 до 65	+60	+40	+30	+15	+9	0	-9	-21	-30 -60	-42 -72	-55 -85
Св. 65 до 80	+30	+10	0	-15	-21	-30	-39	-51	-32 -62	-48 -78	-64 -94
Св. 80 до 100	+71	+47	+35	+17	+10	0	-10	-24	-38 -73	-58 -93	78 -113
Св. 100 до 120	+36	+12	0	-17	-25	-35	-45	-59	-41 -76	-66 -101	-91 -126
Св. 120 до 140									-48 -88	-77 -117	-107 -147
Св. 140 до 160	+83	+54	+40	+20	+12	0	-12	-28	-50 -90	-85 -125	-119 -159
Св. 160 до 180	+43	+14	0	-20	-28	-40	-52	-68	-53 -93	-93 -133	-131 -171
Св. 180 до 200									-60 -106	-105 -151	-149 -195
Св. 200 до 225	+96	+61	+46	+23	+13	0	-14	-33	-63	-113	-163
Св. 225 до 250	+50	+15	0	-23	-33	-46	-60	-79	-109 -67	-159 -123	-209 -179
Св. 250 до 280	+108	+69	+52	+26	+16	0	-14	-36	-113 -74	-169 -138	-225 -198
Св. 280 до 315	+56	+17	0	-26	-36	-52	-66	-88	-126 -78	-190 -150	-250 -220
Св. 200 до 313	.442	7.5					4 -		-130 -87	-202 -169	-272 -247
	+119	+75 +18	+57	+28 -28	+17 -40	0 -57	-16 -73	-41 -98	-144 -93	-226 -187	-304 -273
Св. 355 до 400	+02	+10	0	-28	-4U	-31	-/3	-98	-150 -103	-244 -209	-330 -307
Св. 400 до 450	+131	+83	+63	+31	+18	0	-17	-45	-166	-272	-370
Св. 450 до 500	+68	+20	0	-31	-45	-63	-80	-108	-109 -172	-229 -292	-337 -400

Продолжение	табли	цы А2												
]	Поля до	опускої	3					
Интервал размеров, мм	D8	E8	F8	Н8	Js8	K8	M8	N8	U8	D9	E9	F9	Н9	Js9 ^x
					I	Тределі	ьные от	гклонен	ия, мкм	1				
От 1 до 3	+34 +20	+28 +14	+20 +6	+14 0	+7 -7	0 -14	-	-4 -18	-18 -32	+45 +20	+39 +14	+31 +6	+25 0	+12 -12
Св. 3 до 6	+48 +30	+38 +20	+28 +10	+18	+9 -9	+5 -13	+2 -16	-2 -20	-23 -41	+60 +30	+50 +20	+40 +10	+30	+15 -15
Св. 6 до 10	+62 +40	+47 +25	+35 +13	+22	+11 -11	+6 -16	+1 -21	-3 -25	-28 -50	+76 +40	+61 +25	+49 +13	+36	+18 -18
Св. 10 до 14	+77	+59	+43	+27	+13	+8	+2	-3	-33	+93	+75	+59	+43	+21
Св. 14 до 18	+50	+32	+16	0	-13	-19	-25	-30	-60	+50	+32	+16	0	-21
Св. 18 до 24	+98	+73	+53	+33	+16	+10	+4	-3	-41 -74	+117	+92	+72	+52	+26
Св. 24 до 30	+65	+40	+20	0	-16	-23	-29	-36	-48 -81	+65	+40	+20	0	-26
Св. 30 до 40	+119	+89	+64	+39	+19	+12	+5	-3	-60 -99	+142	+112	+87	+62	+31
Св. 40 до 50	+80	+50	+25	0	-19	-27	-34	-42	-70 -109	+80	+50	+25	0	-31
Св. 50 до 65	+146	+106	+76	+46	+23	+14	+5	-4	-87 -133	+174	+134	+104	+74	+37
Св. 65 до 80	+100	+60	+30	0	-23	-32	-41	-50	-102 -148	+100	+60	+30	0	-37
Св. 80 до 100	+174	+126	+90	+54	+27	+16	-6	-4	-124 -178	+207	+159	+123	+87	+43
Св. 100 до 120	+120	+72	+36	0	-27	-38	-48	-58	-144 -198	+120	+72	+36	0	-43
Св. 120 до 140									-170 -233					
Св. 140 до 160	+208	+148	+106	+63	+31	+20	+8	-4	-190 -253	+245	+185	+143	+100	+50
Св. 160 до 180	+145	+85	+43	0	-31	-43	-55	-67	-210 -273	+145	+85	+43	0	-50
Св. 180 до 200									-236 -308					
Св. 200 до 225	+242	+172	+122	+72	+36	+22	+9	-5	-258	+285	+215	+165	+115	+57
Св. 225 до 250	+170	+100	+50	0	-36	-50	-63	-77	-330 -284	+170	+100	+50	0	-57
Св. 250 до 280							_	_	-356 -315					
	+271	+191	+137	+81	+40	+25 -56	+9 -72	-5 -86	-396 -350	+320	+240	+186	+130	+65 -65
Св. 280 до 315	T170	+110	+50	U	- 4 0	-20	-12	-00	-431 -390	±130	T110	+30	U	-03
Св. 315 до 355	+299	+214	+151	+89	+44	+28	+11	-5	-479	+350	+265	+202	+140	+70
Св. 355 до 400	+210	+125	+62	0	-44	-61	-78	-94	-435 -524	+210	+125	+62	0	-70
Св. 400 до 450	+327	+232	+165	+97	+48	+29	+11	-6	-490 -587	+385	+290	+223	+155	+77
Св. 450 до 500	+230	+135	+68	0	-48	-68	-86	-103	-540 -637	+230	+135	+68	0	-77

Продолжение	таолиц	ы А2										
11			ı			Поля до	пусков			ı		ı
Интервал размеров, мм	D10	H10	Js10 ^x	A11	B11	C11	D11	H11	Js11 ^x	B12	H12	Js12 ^x
					Предел	тьные от	клонени	я, мкм				
От 1 до 3	+60 +20	+40	+20 -20	+330 +270	+200 +140	+120 +60	+80 +20	+60 0	+30 -30	+240 +140	+100 0	+50 -50
Св. 3 до 6	+78 +30	+48 0	+24 -24	+345 +270	+215 +140	+145 +70	+105 +30	+75 0	+37 -37	+260 +140	+120 0	+60 -60
Св. 6 до 10	+98 +40	+58 0	+29 -29	+370 +280	+240 +150	+170 +80	+130 +40	+90 0	+45 -45	+300 +150	+150	+75 -75
Св. 10 до 14	+120	+70	+35	+400	+260	+205	+160	+110	+55	+330	+180	+90
Св. 14 до 18	+50	0	-35	+290	+150	+95	+50	0	-55	+150	0	-90
Св. 18 до 24	+149	+84	+42	+430	+290	+240	+195	+130	+65	+370	+210	+105
Св. 24 до 30	+65	0	-42	+300	+160	+110	+65	0	-65	+160	0	-105
Св. 30 до 40	+180	+100	+50	+470 +310	+330 +170	+280 +120	+240	+160	+80	+420 +170	+250	+125
Св. 40 до 50	+80	0	-50	+480 +320	+340 +180	+290 +130	+80	0	-80	+430 +180	0	-125
Св. 50 до 65	+220	+120	+60	+530 +340	+380 +190	+330 +140	+290	+190	+95	+490 +190	+300	+150
Св. 65 до 80	+100	0	-60	+550 +360	+390 +200	+340 +150	+100	0	-95	+500 +200	0	-150
Св. 80 до 100	+260	+140	+70	+600 +380	+440 +220	+390 +170	+340	+220	+110	+570 +220	+350	+175
Св. 100 до 120	+120	0	-70	+630 +410	+390 +170	+400 +180	+120	0	-110	+590 +240	0	-175
Св. 120 до 140				+710 +460	+510 +260	+450 +200				+660 +260		
Св. 140 до 160	+305 +145	+160 0	+80 -80	+770 +520	+530 +280	+460 +210	+395 +145	+250 0	+125 -125	+580 +280	+400	+200 -200
Св. 160 до 180				+830 +580	+560 +310	+480 +230				+710 +310		
Св. 180 до 200				+950 +660	+630 +340	+530 +240				+800 +340		
Св. 200 до 225	+355 +170	+185 0	+92 -92	+1030 +740	+670 +380	+550 +260	+460 +170	+290 0	+145 -145	+840 +380	+460 0	+230 -230
Св. 225 до 250				+1110 +820	+710 +420	+570 +280				+880 +420		
Св. 250 до 280	+400	+210	+105	+1240 +920	+800 +480	+620 +300	+510	+320	+160	+1000 +480	+520	+260
Св. 280 до 315	+190	0	-105	+1370 +1050	+860 +540	+650 +330	+190	0	-160	+1060 +540	0	-260
Св. 315 до 355	+440	+230	+115	+1560 +1200	+960 +600	+720 +360	+570	+360	+180	+1170 +600	+570	+285
Св. 355 до 400	+210	0	-115	+1710 +1350	+1040 +680	+760 +400	+210	0	-180	+1250 +680	0	-285
Св. 400 до 450	+480	+250	+125	+1900 +1500	+1160 +760	+840 +440	+630	+400	+200	+1390 +760	+630	+315
Св. 450 до 500	+230	0	-125	+2050 +1650	+1240 +840	+880 +480	+230	0	-200	+1470 +840	0	-315

Продолжение	Таолицы	AZ			Поля до	опусков				
Интервал размеров, мм	H13 ^x	Js13 ^x	H14 ^x	Js14 ^x	H15 ^x	Js15 ^x	H16 ^x	Js16 ^x	H17 ^x	Js17 ^x
r r . ,				Пред	ельные от	клонения	, мкм			
От 1 до 3	+140	+70 -70	+250 0	+125 -125	+400	+200 -200	+600 0	+300 -300	+1000	+500 -500
Св. 3 до 6	+180 0	+90 -90	+300	+150 -150	+480 0	+240 -240	+750 0	+375 -375	+1200 0	+600 -600
Св. 6 до 10	+220	+110 -110	+360	+180 -180	+580 0	+290 -290	+900 0	+450 -450	+1500	+750 -750
Св. 10 до 14	+270	+135	+430	+215	+700	+350	+1100	+550	+1800	+900
Св. 14 до 18	0	-135	0	-215	0	-350	0	-550	0	-900
Св. 18 до 24	+330	+165	+520	+260	+840	+420	+1300	+650	+2100	+1050
Св. 24 до 30	0	-165	0	-260	0	-420	0	-650	0	-1050
Св. 30 до 40	+390	+195	+620	+310	+1000	+500	+1600	+800	+2500	+1250
Св. 40 до 50	0	-195	0	-310	0	-500	0	-800	0	-1250
Св. 50 до 65	+460	+230	+740	+370	+1200	+600	+1900	+950	+3000	+1500
Св. 65 до 80	0	-230	0	-370	0	-600	0	-950	0	-1500
Св. 80 до 100	+540	+270	+870	+435	+1400	+700	+2200	+1100	+3500	+1750
Св. 100 до 120	0	-270	0	-435	0	-700	0	-1100	0	-1750
Св. 120 до 140										
Св. 140 до 160	+630	+315	+1000	+500	+1600	+800	+2500	+1250	+4000	+2000
Св. 160 до 180	0	-315	0	-500	0	-800	0	-1250	0	-2000
Св. 180 до 200										
Св. 200 до 225	+720	+360	+1150	+575	+1850	+925	+2900	+1450	+4600	+2300
Св. 225 до 250	0	-360	0	-575	0	-925	0	-1450	0	-2300
Св. 250 до 280										
	+810	+405 -405	+1300	+650 -650	+2100	+1050 -1050	+3200	+1600 -1600	+5200	+2600 -2600
Св. 280 до 315				350		1000		1000		
Св. 315 до 355	+890	+445	+1400	+700	+2300	+1150	+3600	+1800	+5700	+2850
Св. 355 до 400	0	-445	0	-700	0	-1150	0	-1800	0	-2850
Св. 400 до 450	+970	+485	+1550	+775	+2500	+1250	+4000	+2000	+6300	+3150
Св. 450 до 500	0	-485	0	-775	0	-1250	0	-2000	0	-3150

Таблица A3 – Средние значения коэффициентов линейного расширения α

Наименование материала	$oldsymbol{lpha}$, град $^{-1}$	Наименование материала	$lpha$, град $^{-1}$	Наименование материала	$lpha$, град $^{ extstyle -1}$
Алюминий	$23.8 \cdot 10^{-6}$	Латунь	$18 \cdot 10^{-6}$	Стекло	$8.5 \cdot 10^{-6}$
Бронза	$17,6 \cdot 10^{-6}$	Медь	$16,9 \cdot 10^{-6}$	Титан ВТ1	$8 \cdot 10^{-6}$
Вольфрам	$3,3 \cdot 10^{-6}$	Сталь	$12 \cdot 10^{-6}$	Чугун	$10 \cdot 10^{-6}$
Инвар	$1,6 \cdot 10^{-6}$	Сталь Х	$11,5 \cdot 10^{-6}$	Тв. сплав ВК	$4.5 \cdot 10^{-6}$

Таблица A4 – Передаточные коэффициенты К для различных углов призм и разного числа граней проверяемой детали

Число		Угол при	змы, град		Число		Угол при	змы, град	
граней	60	90	108	120	граней	60	90	108	120
3	3,0	2,0	1,6	1,0	7	0	0	1,3	2,0
5	0	2,0	2,2	2,0	9	3,0	0	0	1,0

Таблица А5 – Допуски формы и расположения поверхностей

Интервалы				Ст	епень то	очности				
номинальных	1	2	3	4	5	6	7	8	9	10
размеров, мм		До	пуски п	лоскост	ности и	прямолі	инейнос	ти, мкм		
До 10	0,25	0,4	0,6	1	1,6	2,5	4	6	10	16
Св. 10 до 16	0,3	0,5	0,8	1,2	2	3	5	8	12	20
» 16 » 25	0,4	0,6	1	1,6	2,5	4	6	10	16	25
» 25 » 40	0,5	0,8	1,2	2	3	5	8	12	20	30
» 40 » 63	0,6	1	1,6	2,5	4	6	10	16	25	40
» 63 » 100	0,8	1,2	2	3	5	8	12	20	30	50
» 100 » 160	1	1,6	2,5	4	6	10	16	25	40	60
» 160 » 250	1,2	2	3	5	8	12	20	30	50	80
» 250 » 400	1,6	2,5	4	6	10	16	25	40	60	100
» 400 » 630	2	3	5	8	12	20	30	50	80	120
» 630 » 1000	2,5	4	6	10	16	25	40	60	100	160

Примечание — Под номинальным размером понимается номинальная длина нормируемого участка. Если нормируемый участок не задан, то под номинальным размером понимается номинальная длина большей стороны поверхности или номинальный большой диаметр торцовой поверхности.

оольшей стороны	Интервалы Степень точности													
Интервалы				Степ	ень точі	ности								
номинальных	1	2	3	4	5	6	7	8	9	10				
размеров, мм	Допу	ски цилинд	ричности	і, кругло	сти, про	филя пр	одольн	ого сече	ния, мки	1				
Св. 3 до 10	0,4	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7												
» 10 » 18	0,5	0,5 0,8 1,2 2 3 5 8 12 20 30												
» 18 » 30	0,6	0,6 1 1,6 2,5 4 6 10 16 25 40												
» 30 » 50	0,8													
» 50 » 120	1	1,6	2,5	4	6	10	16	25	40	60				
» 120 » 250	1,2	2	3	5	8	12	20	30	50	80				
» 250 » 400	1,6	2,5	4	6	10	16	25	40	60	100				
» 400 » 630	2 3 5 8 12 20 30 50 80 120													
Примечание – По	д номиналі	ьным разме	ром пони	мается і	номинал	ьный ди	иаметр							

Продолжение таблицы А5

Интервалы				Степ	ень точі	ности				
номинальных	1	2	3	4	5	6	7	8	9	10
размеров, мм		Допуски	и паралл	ельност	и, перпе	ндикуля	рности,	наклона	ı	
			1	и торцов	вого бие	ния, мки	А			
До 10	0,4	0,6	1	1,6	2,5	4	6	10	16	25
Св. 10 до 16	0,5	0,8	1,2	2	3	5	8	12	20	30
» 16 » 25	0,6	1	1,6	2,5	4	6	10	16	25	40
» 25 » 40	0,8	1,2	2	3	5	8	12	20	30	50
» 40 » 63	1	1,6	2,5	4	6	10	16	25	40	60
» 63 » 100	1,2	2	3	5	8	12	20	30	50	80
» 100 » 160	1,6	2,5	4	6	10	16	25	40	60	100
» 160 » 250	2	3	5	8	12	20	30	50	80	120
» 250 » 400	2,5	4	6	10	16	25	40	60	100	160
» 400 » 630	3	5	8	12	20	30	50	80	120	200

Примечание — При назначении допусков параллельности, перпендикулярности, наклона под номинальным размером понимается номинальная длина нормируемого участка или номинальная длина всей нормируемой поверхности. При назначении допусков торцового биения под номинальным размером понимается заданный номинальный диаметр торцовой поверхности.

Интервалы				Степ	ень точі	ности						
номинальных	1	2	3	4	5	6	7	8	9	10		
размеров, мм		До	пуски раді	иального	о биения	и. Допус	ки соо	сности,				
		симметричности, пересечения осей, мкм										
Св. 3 до 10	1	1,6	2,5	4	6	10	16	25	40	60		
» 10 » 18	1,2	2	3	5	8	12	20	30	50	80		
» 18 » 30	1,6	2,5	4	6	10	16	25	40	60	100		
» 30 » 50	2	3	5	8	12	20	30	50	80	120		
» 50 » 120	2,5	4	6	10	16	25	40	60	100	160		
» 120 » 250	3	5	8	12	20	30	50	80	120	200		
» 250 » 400	4	6	10	16	25	40	60	100	160	250		
» 400 » 630	5	8	12	20	30	50	80	120	200	300		

Примечание – При назначении допусков радиального биения под номинальным размером понимается номинальный диаметр рассматриваемой поверхности. При назначении допусков соосности, симметричности, пересечения осей под номинальным размером понимается номинальный диаметр рассматриваемой поверхности вращения или номинальный размер между поверхностями, образующими рассматриваемый симметричный элемент.

Таблица А6 – Параметры шероховатости поверхности

		Значени	я Ra, мкм	1			Знач	чения Rz	и Rmax,	МКМ	
_	100	10,0	1,00	0,100	0,010	_	1000	100	10,0	1,00	0,100
_	80	8,0	0,80	0,080	0,008	_	800	80	8,0	0,80	0,080
_	63	6,3	0,63	0,063	1	_	630	63	6,3	0,63	0,063
_	50	5,0	0,50	0,050	_	_	500	50	5,0	0,50	0,050
400	40	4,0	0,40	0,040	_	_	400	40	4,0	0,40	0,040
320	32	3,2	0,32	0,032	1	_	320	32	3,2	0,32	0,032
250	25	2,5	0,25	0,025	_	_	250	25	2,5	0,25	0,025
200	20	2,0	0,20	0,020	_	_	200	20	2,0	0,20	_
160	16	1,6	0,160	0,016	_	1600	160	16	1,6	0,160	_
125	12,5	1,25	0,125	0,012		1250	125	12,5	1,25	0,125	_

Таблица А.7 – Допустимые погрешности при измерениях линейных размеров от 1 до 500 мм

	Квалитеты												
Номинальные размеры, мм	4			5		6		7		8		9	
размеры, мм	IT	δ	IT	δ	IT	δ	IT	δ	IT	δ	IT	δ	
До 3	3	1,0	4	1,4	6	1,8	10	3,0	14	3,0	25	6	
Свыше 3 до 6	4	1,4	5	1,6	8	2,0	12	3,0	18	4,0	30	8	
Свыше 6 до 10	4	1,4	6	2,0	9	3,0	15	4,0	22	5,0	36	9	
Свыше 10 до 18	5	1,6	8	2,8	11	3,0	18	5,0	27	7,0	43	10	
Свыше 18 до 30	6	2,0	9	3,0	13	4,0	21	6,0	33	8,0	52	12	
Свыше 30 до 50	7	2,4	11	4,0	16	5,0	25	7,0	39	10,0	62	16	
Свыше 50 до 80	8	2,8	13	4,0	19	5,0	30	9,0	48	12,0	74	18	
Свыше 80 до 120	10	3,0	15	5,0	22	6,0	35	10,0	54	12,0	87	20	
Свыше 120 до 180	12	4,0	18	6,0	25	7,0	40	12,0	63	16,0	100	30	
Свыше 180 до 250	14	5,0	20	7,0	29	8,0	46	12,0	72	18,0	115	30	
Свыше 250 до 315	16	5,0	23	8,0	32	10,0	52	14,0	81	20,0	130	30	
Свыше 315 до 400	18	6,0	25	9,0	36	10,0	57	16,0	89	24,0	140	40	
Свыше 400 до 500	20	6,0	27	9,0	40	12,0	63	18,0	97	26,0	155	40	

	Квалитеты												
Номинальные размеры, мм	10		1	11		12		13		14		15	
Mepsi, MM	IT	δ	IT	δ	IT	δ	IT	δ	IT	δ	IT	δ	
До 3	40	8	60	12	100	20	140	30	250	50	400	80	
Свыше 3 до 6	48	10	75	16	120	30	180	40	300	60	480	100	
Свыше 6 до 10	58	12	90	18	150	30	220	50	360	80	580	120	
Свыше 10 до 18	70	14	110	30	180	40	270	60	430	90	700	140	
Свыше 18 до 30	84	18	130	30	210	50	330	70	520	120	840	180	
Свыше 30 до 50	100	20	160	40	250	50	390	80	620	140	1000	200	
Свыше 50 до 80	120	30	190	40	300	60	460	100	740	160	1200	240	
Свыше 80 до 120	140	30	220	50	350	70	510	120	870	180	1400	280	
Свыше 120 до 180	180	40	250	50	400	80	630	140	1000	200	1600	320	
Свыше 180 до 250	185	40	290	60	460	100	720	160	1150	240	1850	380	
Свыше 250 до 315	210	50	320	70	520	120	810	180	1300	260	2100	440	
Свыше 315 до 400	230	50	360	80	570	120	890	180	1400	280	2300	460	
Свыше 400 до 500	250	50	400	80	630	140	970	200	1550	320	2500	500	

Таблица А8 – Метрологическая характеристика многомерных средств измерения

Наименование сред измерения	Интервал измерения	Цена деления шкалы	Интервал шкалы	Суммарная погреш- ность измерения	Настроечная мера	Погрешность показаний шкалы	
	MM	MM	MM	MM		MM	
	Пр	и измерен	ии отвеј	 Эстий			
Штангенциркуль	ШЦ-П	10–200	0,05	0–200	±0,130	_	±0,050
Нутромер микрометриче	ский	75–175	0,01	13	±0,020	_	±0,008
	НИ- 10	6–10	0,01	±0,3	±0,016	X	±0,006
	НИ-18	10–18	0,01	±0,4	±0,016	Скоба из концевых мер 3 класса	±0,006
Нутромер индикатор-	НИ-35	18–35	0,01	±0,75	±0,016	класса	±0,0075
ный при измерении в пределах всей шкалы	НИ-50	35–50	0,01	±1	±0,017	оба из 1 мер 3 в	±0,0075
	НИ-100	50-100	0,01	±2	±0,017	коба	±0,010
	НИ-160	100–160	0,01	±2	±0,018	C	±0,010
	НИ-10	6–10	0,01	±0,05	±0,009	Скоба из концевых мер 3 класса	±0,004
11	НИ-18	10–18	0,01	±0,05	±0,009		±0,004
Нутромер индикатор- ный при измерении	НИ-35	18–35	0,01	±0,05	±0,009		±0,004
аттестованным	НИ-50	35–50	0,01	±0,05	±0,009		±0,004
участком шкалы	НИ-100	50-100	0,01	±0,05	±0,009	коба и	±0,004
	НИ-160	100–160	0,01	±0,05	±0,009	C	±0,004
Нутромер индикатор-	104	6–10	0,001	±0,05	±0,0025		±0,002
ный повышенной точ-	105	10–18	0,001	±0,05	±0,0030	cca	±0,0025
ности	109	18–50	0,002	±0,1	±0,0045	кла	±0,0025
		6–10	0,01	±0,05	0,0015	ep 2	±0,004
			0,01	±0,05	0,0015	M XI	±0,004
Нутромер индикаторный с голов- кой точностью 0,001 мм		18–30	0,01	±0,05	0,0015	цевь	±0,004
		30–50	0,01	±0,05	0,0020	коні	±0,004
		50-80	0,01	±0,05	0,0020	а из	±0,004
		80–120	0,01	±0,05	0,0020	Скоба из концевых мер 2 класса	±0,004
Оптиметр горизонтальны ОГО-1 с приспособлени	14–150	0,001	±0,1	±0,0018	C	±0,0003	

Наименование средо измерения	Интервал	Цена деле-	Интервал	Суммарная погрешность измерения	Настроечная мера	Погреш- ность пока- заний шкалы	
		ММ При изме	ММ пении ва	ММ ПОВ	MM		MM
	ШЦ-І	0–125	0,1	0–125	±0,160	_	±0,100
Штангенциркуль	ШЦ-П	0–200	0,05	0-200	±0,090	_	±0,050
Индикаторная скоба СИ	· · · · · · · · · · · · · · · · · · ·	0–50 50–100	0,01	±5	±0,012		±0,010
1		100-200	0,01	±5	±0,014	KJI.	±0,012
Индикаторная скоба СИ измерении аттестованны	1	0–50 50–100	0,01	±0,05	±0,008	Меры 3 кл.	±0,006
участком шкалы		100–200	0,01	±0,05	±0,008		±0,006
Индикатор на штативе	Индикатор на штативе		0,01	±5	±0,015		±0,011
Микрометр 1 кп	0-25: $50-75$: $100-125$: $150-175$		0,01	25	±0,008	_	±0,004
тинкрометр т кл.			0,01	25	±0,012	_	±0,005
Микрометр 0 кл.		0–25	0,01	25	$\pm 0,005$	_	$\pm 0,002$
Микрометр рычажный	MP	0–25 25–50	0,002	±0,02	±0,004	Меры 3 кл.	±0,003
типкрометр рычажный	МРИ	50–75 75–100	0,005	±0,05	±0,006		±0,004
Скоба рычажная СР	50–75	5; 25–50 5; 75–100	0,002	±0,08	±0,0035	M	±0,002
Инструментальный микроскоп ММИ	попе	д. 0–75 ep. 0–25	0,005	25	±0,003	_	±0,002
Оптиметр горизонтальнь ОГО-1	ій	0–350	0,001	±0,1	±0,0016	Меры 2 кл.	±0,0003
Оптиметр вертикальный OBO-1		0–160	0,001	±0,1	±0,0013	M ₂	±0,0003
	и измерени						
Штангенциркуль ШЦ-І		0–125	0,1	125	±0,300	_	±0,100
Штангенглубиномер	0–200	0,05	200	±0,150	_	±0,050	
Штангенрейсмасс		0–250	0,05	250	±0,150	_	±0,050
Глубиномер микрометр ГМ	0–100	0,01	25	±0,018	_	±0,004	
Глубиномер индикаторні	0–100	0,01	10	±0,015	Меры 3 кл.	±0,004	

ПРИЛОЖЕНИЕ Б

Текст расчетно-графической работы № 1 «Система допусков и посадок гладких соединений»

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный аграрный университет имени И. Т. Трубилина» Факультет механизации Кафедра ремонта машин и материаловедения

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

СИСТЕМА ДОПУСКОВ И ПОСАДОК ГЛАДКИХ СОЕДИНЕНИЙ

Расчетно-графическая работа № 1

Выполнил	
Студент	
Группа	
Вариант	
Принял	
•	

Краснодар КубГАУ 201

Задание № 1

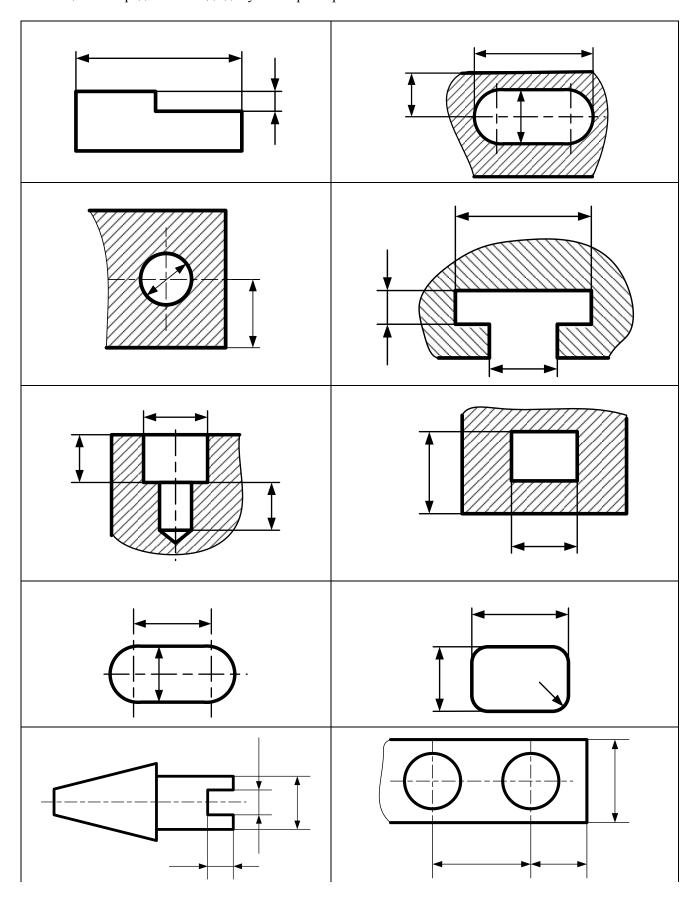
Определить годность трех валов или отверстий по результатам их измерений, установить вид брака — исправимый или неисправимый. Определить d, d_{max} , d_{min} , d_c , ei, es, e_c или D, D_{max} , D_{min} , D_c , EI, ES, E_c . Построить схему поля допуска.

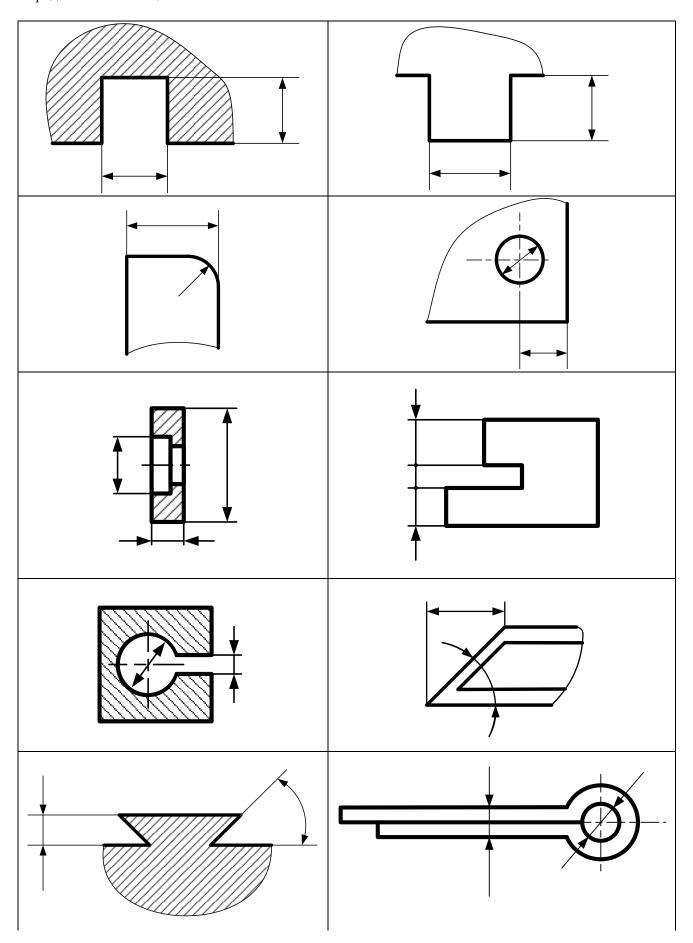
Таблица 1 – Вариант индивидуального задания № 1

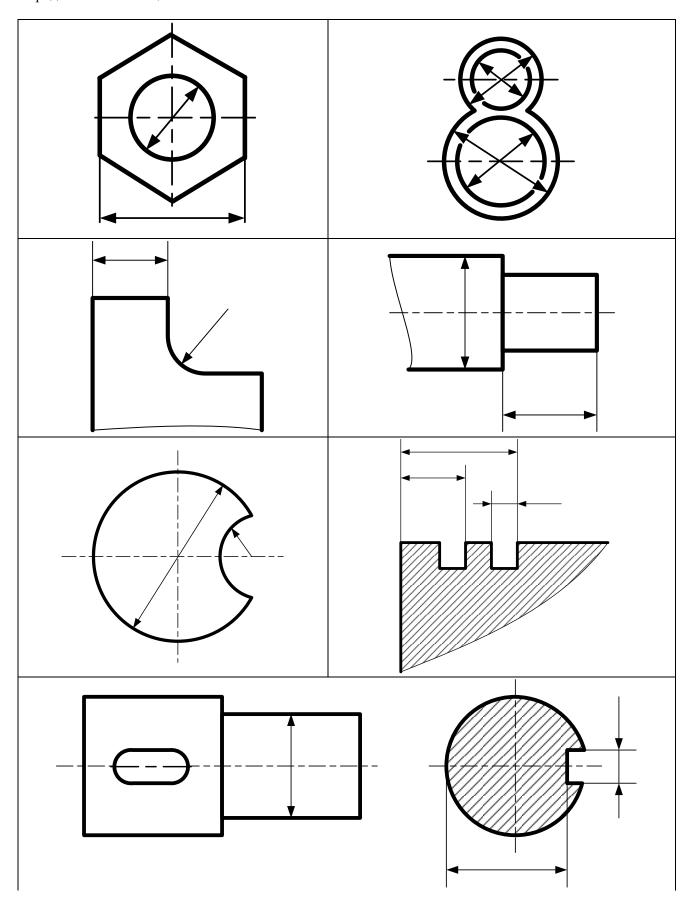
Вариант №					
Обозначение на чертеже					
	$d_1(D_1)$				
Действительный размер, мм	$d_2(D_2)$				
	d ₃ (D ₃)				

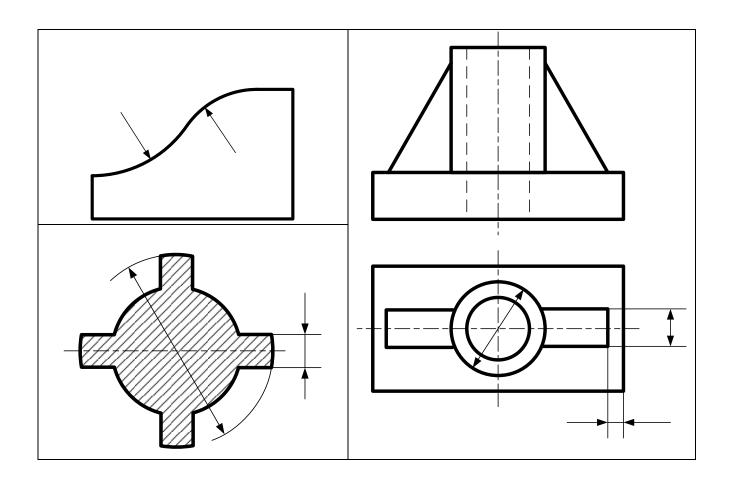
Решение:

Таблица 2 – Размерный анализ размера


Размер на чертеже	d, мм
Номинальный размер	d (D), мм
Максимальный размер	d _{max} (D _{max}), MM
Минимальный размер	d _{min} (D _{min}), мм
Средний размер	d _c (D _c), мм
Верхнее отклонение	es (ES), мкм
Нижнее отклонение	еі (EI), мкм
Среднее отклонение	е _с (Е _с), мкм
Допуск размера	Td (TD), мкм


Таблица 3 – Определение годности деталей


Действительный	200000000	Голон (+ -)	Брак			
размер	Значение, мм	Годен (+, -)	исправимый	неисправимый		
$d_1(D_1)$						
$d_2(D_2)$						
d ₃ (D ₃)						


Таблица 4 – Определение вида допуска на размер

Продолжение таблицы 4

Задание № 3

На чертеже записано: «Неуказанные предельные отклонения размеров: отверстий — H14, валов — h14, остальных \pm $\frac{IT14}{2}$ ». Определить предельные размеры и величины допусков свободных размеров деталей, указанных на рисунке.

Рисунок 2 – Эскиз с решением задания № 3

Задание № 4

Определить квалитет, по которому назначен допуск на изготовление.

Таблица 5 – Вариант индивидуального задания № 3

Вариант	
Номинальный диаметр, мм	
Величина допуска, мкм	

Решение:

Задание № 5

Температура воздуха в цехе $+20^{\circ}$ С. Средства измерения, изготовленные из стали, имеют ту же температуру. Определить допуск размера, погрешность измерения размера детали и погрешность от температурной деформации. Сравнить погрешность от температурной деформации детали с погрешностью измерения.

Таблица 6 – Вариант индивидуального задания № 4

Вариант	
Номинальный размер, мм	
Обозначения поля допуска	
Температура детали, ⁰ С	
Материал детали	

Решение:

ПРИЛОЖЕНИЕ В

Текст расчетно-графической работы № 2 «Погрешности формы и расположения поверхностей»

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный аграрный университет имени И. Т. Трубилина» Факультет механизации Кафедра ремонта машин и материаловедения

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

ПОГРЕШНОСТИ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ

Расчетно-графическая работа № 2

Выполнил	
Студент	
Группа	
Вариант	
Принял	
-	

Краснодар КубГАУ 201

Задание № 1					
	бозначения	предельных	отклонений	формы и	расположения
	Рисунок	I – Эскиз зала	ния № 1		
	Задание № 1 Расшифровать условные орхностей на эскизе.	Расшифровать условные обозначения эхностей на эскизе.	Расшифровать условные обозначения предельных эхностей на эскизе.	Расшифровать условные обозначения предельных отклонений	Расшифровать условные обозначения предельных отклонений формы и охностей на эскизе.

Задание № 2

Решение:

	w.a	Р	исунок 2 – Э	скиз с решен	нием задания	ı № 2		
З ада	ание № 3							
Реш	ение:							
Изнетам измер	ений пост	инструмента гроить граф измерение	ик и указат	ь максимал	ьную велич	ину откло	нения от	прямоли
	ица 1 – Ва	риант индиві	идуального з	адания № 4				
Вариант	$\Delta_{1,}$ MKM	Δ_{2} MKM	Δ_{3} MKM	Δ_{4} MKM	Δ_5 , MKM	Δ_{6} , MKM	Δ_{7} MKM	L, mm

Эскиз с решением:

Рисунок 3 – Эскиз с решением задания № 4

ПРИЛОЖЕНИЕ Г

Текст расчетно-графической работы № 3 «Шероховатость поверхности»

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный аграрный университет имени И. Т. Трубилина» Факультет механизации Кафедра ремонта машин и материаловедения

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ

Расчетно-графическая работа № 3

Выполнил			
Студент			
Группа		•	
Вариант			
Принял			
•			

Краснодар КубГАУ 201

Задание № 1

Определить значение параметра шероховатости Rz по приведенным результатам обработки профилограммы поверхности. Коэффициент вертикального увеличения $\mathcal{Y}_B = 2000$, коэффициент горизонтального увеличения $\mathcal{Y}_{\Gamma} = 60$. (Эскиз к заданию \mathbb{N}_{Σ} 1 отсканировать и вкле ить ниже).
Рисунок 1 – Эскиз к заданию № 1 (вклейка)
Решение:

Задание № 2						
Расшифровать обозначения шероховатости на чертеже.						
Рисунок 2 – Эскиз к заданию № 2						
Решение:						

приложение д

Текст расчетно-графической работы № 4 «Определение производственного допуска»

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный аграрный университет имени И. Т. Трубилина» Факультет механизации Кафедра ремонта машин и материаловедения

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

ОПРЕДЕЛЕНИЕ ПРОИЗВОДСТВЕННОГО ДОПУСКА

Расчетно-графическая работа № 4

Выполнил			
Студент			
Группа			
Вариант			
Принял			
-			

Краснодар КубГАУ 201

Задание.

Определить производственный допуск и предельные размеры при изготовлении

Решение.

Рисунок 1 — Расположение приемочных границ по отношению к полю допуска отверстия
124

ПРИЛОЖЕНИЕ Е

Текст расчетно-графической работы № 5 «Определение настроечной меры при настройке измерительного инструмента»

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный аграрный университет имени И. Т. Трубилина» Факультет механизации Кафедра ремонта машин и материаловедения

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

ОПРЕДЕЛЕНИЕ НАСТРОЕЧНОЙ МЕРЫ ПРИ НАСТРОЙКЕ ИЗМЕРИТЕЛЬНОГО ИНСТРУМЕНТА

Расчетно-графическая работа № 5

Выполнил	
Студент	
Группа	
Вариант	
Принял	
-	

Задан	ание.	
Для <u>-</u>	д	помощью
определить настройки.	ть настроечную меру при настройке измерительного инструмента и построки.	, оить схему

Решение.

ПРИЛОЖЕНИЕ Ж

Текст расчетно-графической работы «Решение проверочной задачи теории размерных цепей»

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Факультет механизации

Кафедра ремонта машин и материаловедения

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

РЕШЕНИЕ ПРОВЕРОЧНОЙ ЗАДАЧИ ТЕОРИИ РАЗМЕРНЫХ ЦЕПЕЙ

Расчетно-графическая работа № 6

Выполнил			
Студент			
Группа			
Вариант			
Принял			
-			

Задание

Даны две детали 1 и 2 с соответствующими размерами. После сборки деталь 1 вставляется в отверстие детали 2, при этом происходит соприкосновение деталей по одному из трех торцов. Определить номинальную, максимальную и минимальную возможную величину зазоров между двумя оставшимися свободными торцами деталей после сборки. Методы расчета: максимум-минимум и вероятностный (если число составляющих звеньев не менее четырех).

Таблица 1 – Вариант индивидуального задания

Baj	оиант	\mathbf{A}_1	A_2	A_3	A_4	Б ₁	\mathcal{F}_2	\mathbf{F}_3

Рисунок 1 – Эскиз к заданию

Решение: